Vertically aligned hexagonal WO3 nanotree electrode for photoelectrochemical water oxidation

被引:14
|
作者
Nukui, Yuya [1 ]
Srinivasan, Nagarajan [1 ]
Shoji, Shusaku [1 ]
Atarashi, Daiki [1 ]
Sakai, Etsuo [1 ]
Miyauchi, Masahiro [1 ,2 ]
机构
[1] Tokyo Inst Technol, Grad Sch Sci & Engn, Dept Met & Ceram Sci, Meguro Ku, Tokyo 1528552, Japan
[2] Japan Sci & Technol Agcy JST, Kawaguchi, Saitama 3320012, Japan
基金
日本科学技术振兴机构;
关键词
SHUTTLE REDOX MEDIATOR; VISIBLE-LIGHT; CRYSTAL-STRUCTURE; MONOCLINIC WO3; THIN-FILMS; PHOTOCATALYTIC ACTIVITY; PHOTOANODES; O-2; NANOSTRUCTURE; NANOPARTICLES;
D O I
10.1016/j.cplett.2015.07.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin films of aligned hexagonal WO3 nanotrees were fabricated on metal tungsten substrates by hydrothermal treatment. In the presence of a sacrificial reduction agent, the fabricated WO3 nanotree films oxidized water to evolve oxygen under visible-light irradiation. The photocatalytic water oxidation activity of the WO3 nanotree was higher than that of a dense monoclinic WO3 electrode, and had a quantum efficiency of 3.2% under visible-light irradiation. With the application of an anodic bias potential, the WO3 nanotree electrode produced both hydrogen and oxygen in the absence of a sacrificial agent under visible-light irradiation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:306 / 311
页数:6
相关论文
共 50 条
  • [31] Partial oxidation of glucose by a Pt|WO3 electrode
    Zhang, X
    Chan, KY
    You, JK
    Lin, ZG
    Tseung, ACC
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 430 (1-2): : 147 - 153
  • [32] Architecture modification and In3+-doping of WO3 photoanodes to boost the photoelectrochemical water oxidation performance
    Peng Zeng
    Yang Zhou
    Lingling Peng
    Shaochuan Wang
    Tianyou Peng
    Science China(Chemistry), 2023, (11) : 3269 - 3279
  • [33] Architecture modification and In3+-doping of WO3 photoanodes to boost the photoelectrochemical water oxidation performance
    Zeng, Peng
    Zhou, Yang
    Peng, Lingling
    Wang, Shaochuan
    Peng, Tianyou
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (11) : 3269 - 3279
  • [34] Architecture modification and In3+-doping of WO3 photoanodes to boost the photoelectrochemical water oxidation performance
    Peng Zeng
    Yang Zhou
    Lingling Peng
    Shaochuan Wang
    Tianyou Peng
    Science China Chemistry, 2023, 66 : 3269 - 3279
  • [35] Fabrication of WO3/RGO/Ni:FeOOH heterostructure for synergistically enhancing photoelectrochemical water oxidation
    Zhang, Xiaofan
    Bian, Xiaofei
    Xu, Haitao
    Wu, Wenjian
    APPLIED SURFACE SCIENCE, 2021, 542
  • [36] Room temperature plasma enriching oxygen vacancies of WO3 nanoflakes for photoelectrochemical water oxidation
    Li, Qiling
    Li, Shuo
    Ajouyed, Omar
    Chen, Chen
    Zhou, Yangyang
    Li, Chenhui
    Niu, Songyang
    Yi, Haibo
    Huo, Jia
    Wang, Shuangyin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 816 (816)
  • [37] N Doped Carbon Dot Modified WO3 Nanoflakes for Efficient Photoelectrochemical Water Oxidation
    Kong, Weiqian
    Zhang, Xiaofan
    Liu, Shuangshuang
    Zhou, Yannan
    Chang, Binbin
    Zhang, Shouren
    Fan, Hongbo
    Yang, Baocheng
    ADVANCED MATERIALS INTERFACES, 2019, 6 (01)
  • [38] Photoelectrochemical water oxidation at electrophoretically deposited WO3 films as a function of crystal structure and morphology
    Rodriguez-Perez, Manuel
    Chacon, Cecilia
    Palacios-Gonzalez, Eduardo
    Rodriguez-Gattorno, Geonel
    Oskam, Gerko
    ELECTROCHIMICA ACTA, 2014, 140 : 320 - 331
  • [39] Efficient Anodically Grown WO3 for Photoelectrochemical Water Splitting
    Caramori, S.
    Cristino, V.
    Meda, L.
    Tacca, A.
    Argazzi, R.
    Bignozzi, C. A.
    EMRS SYMPOSIUM T: MATERIALS FOR SOLAR HYDROGEN VIA PHOTO-ELECTROCHEMICAL PRODUCTION, 2012, 22 : 127 - 136
  • [40] Engineered WO3 nanorods for conformal growth of WO3/BiVO4 core–shell heterojunction towards efficient photoelectrochemical water oxidation
    Jinzhan Su
    Tao Zhang
    Lu Wang
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 4481 - 4491