On the Maximum Entropy Negation of a Probability Distribution

被引:72
|
作者
Yager, Ronald R. [1 ]
机构
[1] Iona Coll, Inst Machine Intelligence, New Rochelle, NY 10805 USA
关键词
Aggregation; decision-making; membership grade; nonstandard fuzzy set;
D O I
10.1109/TFUZZ.2014.2374211
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We suggest a transformation to obtain the negation of a probability distribution. We investigate the properties of this negation. Using the Dempster-Shafer theory of evidence, we show of all the possible negations our proposed negation is one having a maximal type entropy.
引用
收藏
页码:1899 / 1902
页数:4
相关论文
共 50 条
  • [31] A probability distribution model based on the maximum entropy principle for wind power fluctuation estimation
    Wang, Lingzhi
    Wei, Lai
    Liu, Jun
    Qian, Fucai
    ENERGY REPORTS, 2022, 8 : 5093 - 5099
  • [32] Maximum Entropy for Determining the Transition Probability Matrix of a Markov Chain with a Specified Stationary Distribution
    Nikooravesh, Zohre
    THAILAND STATISTICIAN, 2020, 18 (02): : 235 - 242
  • [33] Bootstrap and Maximum Entropy Based Small-sample Product Lifetime Probability Distribution
    Suo, Hailong
    Gao, Jianmin
    Gao, Zhiyong
    Jiang, Hongqvan
    Wang, Rongxi
    IFAC PAPERSONLINE, 2015, 48 (03): : 219 - 224
  • [34] On an inequality for the entropy of a probability distribution
    Matic, M
    Pearce, CEM
    Pecaric, J
    ACTA MATHEMATICA HUNGARICA, 1999, 85 (04) : 345 - 349
  • [35] On an inequality for the entropy of a probability distribution
    Jardas, C
    Pecaric, J
    Roki, R
    Sarapa, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (02): : 209 - 214
  • [36] On an Inequality for the Entropy of a Probability Distribution
    M. Matić
    C. E. M. Pearce
    J. Pečarić
    Acta Mathematica Hungarica, 1999, 85 : 345 - 349
  • [37] Maximum entropy approach to probability density estimation
    Tel Aviv Univ, Tel Aviv, Israel
    Int Conf Knowledge Based Intell Electron Syst Proc KES, (225-230):
  • [38] Maximum Entropy and Probability Kinematics Constrained by Conditionals
    Lukits, Stefan
    ENTROPY, 2015, 17 (04) : 1690 - 1700
  • [39] The principle of maximum entropy and a problem in probability kinematics
    Stefan Lukits
    Synthese, 2014, 191 : 1409 - 1431
  • [40] The principle of maximum entropy and a problem in probability kinematics
    Lukits, Stefan
    SYNTHESE, 2014, 191 (07) : 1409 - 1431