The existence of Hamiltonian stationary Lagrangian tori in Kahler manifolds of any dimension

被引:6
|
作者
Lee, Yng-Ing [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Ctr Theoret Sci, Taipei, Taiwan
关键词
BLOW-UP PHENOMENA; SUBMANIFOLDS; SURFACES;
D O I
10.1007/s00526-011-0457-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hamiltonian stationary Lagrangians are Lagrangian submanifolds that are critical points of the volume functional under Hamiltonian deformations. They are natural generalizations of special Lagrangians or Lagrangian and minimal submanifolds. In this paper, we obtain a local condition that gives the existence of a smooth family of Hamiltonian stationary Lagrangian tori in Kahler manifolds. This criterion involves a weighted sum of holomorphic sectional curvatures. It can be considered as a complex analogue of the scalar curvature when the weighting are the same. The problem is also studied by Butscher and Corvino (Hamiltonian stationary tori in Kahler manifolds, 2008).
引用
收藏
页码:231 / 251
页数:21
相关论文
共 50 条
  • [21] Homogeneous Kahler and Hamiltonian manifolds
    Gilligan, Bruce
    Miebach, Christian
    Oeljeklaus, Karl
    MATHEMATISCHE ANNALEN, 2011, 349 (04) : 889 - 901
  • [22] Potential functions and actions of tori on Kahler manifolds
    Burns, D
    Guillemin, V
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2004, 12 (1-2) : 281 - 303
  • [23] On families of lagrangian tori on hyperkahler manifolds
    Amerik, Ekaterina
    Campana, Frederic
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 71 : 53 - 57
  • [24] BIHARMONIC LAGRANGIAN SUBMANIFOLDS IN KAHLER MANIFOLDS
    Maeta, Shun
    Urakawa, Hajime
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (02) : 465 - 480
  • [25] Lagrangian product tori in symplectic manifolds
    Chekanov, Yuri
    Schlenk, Felix
    COMMENTARII MATHEMATICI HELVETICI, 2016, 91 (03) : 445 - 475
  • [26] Squeezing Lagrangian tori in dimension 4
    Hind, Richard
    Opshtein, Emmanuel
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (03) : 535 - 567
  • [27] Hamiltonian stationary Lagrangian fibrations
    Legendre, Eveline
    Rollin, Yann
    JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (03) : 753 - 791
  • [28] Webs of Lagrangian tori in projective symplectic manifolds
    Jun-Muk Hwang
    Richard M. Weiss
    Inventiones mathematicae, 2013, 192 : 83 - 109
  • [29] Webs of Lagrangian tori in projective symplectic manifolds
    Hwang, Jun-Muk
    Weiss, Richard M.
    INVENTIONES MATHEMATICAE, 2013, 192 (01) : 83 - 109
  • [30] Lagrangian tori in closed 4-manifolds
    Knapp, Adam C.
    JOURNAL OF TOPOLOGY, 2010, 3 (02) : 333 - 342