An Antiaging Electrolyte Additive for High-Energy-Density Lithium-Ion Batteries

被引:69
|
作者
Han, Jung-Gu [1 ]
Hwang, Chihyun [2 ]
Kim, Su Hwan [1 ]
Park, Chanhyun [1 ]
Kim, Jonghak [2 ]
Jung, Gwan Yeong [1 ]
Baek, Kyungeun [1 ]
Chae, Sujong [1 ]
Kang, Seok Ju [1 ]
Cho, Jaephil [1 ]
Kwak, Sang Kyu [1 ]
Song, Hyun-Kon [2 ]
Choi, Nam-Soon [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Dept Energy Engn, 50 UNIST Gil, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Dept Chem Engn, 50 UNIST Gil, Ulsan 44919, South Korea
关键词
cathode-electrolyte interface; electrolyte additives; lithium-ion batteries; reactive oxygen species; superoxide scavengers; SUPEROXIDE-DISMUTASE; CATHODE MATERIALS; MANGANESE OXIDES; SURFACE; CARBONATE; DECOMPOSITION; DEGRADATION; DISSOLUTION; MECHANISMS; MIGRATION;
D O I
10.1002/aenm.202000563
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-capacity Li-rich layered oxide cathodes along with Si-incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high-energy-density lithium-ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid-decorated fullerene (MA-C-60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high-capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long-term stability of the interfacial structures of electrodes. Moreover, an MA-C-60-added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode-electrolyte interface for Li-rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high-capacity electrodes in LIBs.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Sulfonylimide based single lithium-ion conducting polymer electrolytes boosting high-safety and high-energy-density lithium batteries
    Chen, Chaojie
    Li, Zulei
    Zhou, Qian
    Han, Pengxian
    Cui, Guanglei
    ETRANSPORTATION, 2024, 20
  • [42] Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials
    Zhao, Shuoqing
    Guo, Ziqi
    Yan, Kang
    Wan, Shuwei
    He, Fengrong
    Sun, Bing
    Wang, Guoxiu
    ENERGY STORAGE MATERIALS, 2021, 34 (34) : 716 - 734
  • [43] Polymer-Based Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries - Review
    Lu, Xiao
    Wang, Yumei
    Xu, Xiaoyu
    Yan, Binggong
    Wu, Tian
    Lu, Li
    ADVANCED ENERGY MATERIALS, 2023,
  • [44] Sulfur-doped hard carbon hybrid anodes with dual lithium-ion/metal storage bifunctionality for high-energy-density lithium-ion batteries
    Sungmin Cho
    Jong Chan Hyun
    Son Ha
    Yeonhua Choi
    Honggyu Seong
    Jaewon Choi
    HyoungJoon Jin
    Young Soo Yun
    Carbon Energy, 2023, 5 (01) : 251 - 261
  • [45] Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries
    Han, Meisheng
    Mu, Yongbiao
    Wei, Lei
    Zeng, Lin
    Zhao, Tianshou
    CARBON ENERGY, 2024, 6 (04)
  • [46] Controllable and scalable prelithiation of dry silicon-based anodes for high-energy-density lithium-ion batteries
    Dong, Haochen
    Yang, Tingzhou
    Liu, Chuangwei
    Luo, Dan
    Liu, Ning
    Gao, Yunnan
    Shi, Zhenjia
    Zhang, Yongguang
    Chen, Zhongwei
    ENERGY STORAGE MATERIALS, 2025, 75
  • [47] Polymer-Based Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries - Review
    Lu, Xiao
    Wang, Yumei
    Xu, Xiaoyu
    Yan, Binggong
    Wu, Tian
    Lu, Li
    ADVANCED ENERGY MATERIALS, 2023, 13 (38)
  • [48] NIPS derived three-dimensional porous copper membrane for high-energy-density lithium-ion batteries
    Guan, Xinxin
    Zhang, Zhijia
    Zhang, Shaofei
    Wang, Yixiao
    Yang, Huan
    Wang, Jiamin
    Li, Ming
    Lu, Huanming
    Li, Yong
    Huang, Qin
    Zheng, Xuerong
    Qiao, Zhijun
    Yu, Zhenyang
    Kang, Jianli
    ELECTROCHIMICA ACTA, 2019, 312 : 424 - 431
  • [49] Enhancing the Fast Charging Capability of High-Energy-Density Lithium-Ion Batteries A pack design perspective.
    Chen, Chengxiu
    Plunkett, Samuel
    Salameh, Mohamad
    Stoyanov, Stoyan
    Al-Hallaj, Said
    Krishnamurthy, Mahesh
    IEEE ELECTRIFICATION MAGAZINE, 2020, 8 (03): : 62 - 69
  • [50] Achieving high-energy-density lithium-ion batteries through oxygen redox of cathode: From fundamentals to applications
    Jiao, Sichen
    Li, Quan
    Xiong, Xinyun
    Yu, Xiqian
    Li, Hong
    Chen, Liquan
    Huang, Xuejie
    APPLIED PHYSICS LETTERS, 2022, 121 (07)