Video compression using structural flow

被引:0
|
作者
Alatas, O [1 ]
Javed, O [1 ]
Shah, M [1 ]
机构
[1] Univ Cent Florida, Sch Comp Sci, Orlando, FL 32816 USA
来源
2005 International Conference on Image Processing (ICIP), Vols 1-5 | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new technique in wavelet video compression that exploits the spatiotemporal regularity of the video. A sequence of frames is said to be regular along the directions in which the pixels vary the least. The directions of regularity of a sequence depend on both its motion content and its spatial structure. We model these directions by a 3D vector field, referred as the Structural Flow. This flow determines the paths of regularity along which the entropy of the data is smaller. We use these paths to construct a special class of wavelet basis, i.e., the 3D orthonormal bandelet basis for the directional decomposition of the sequence. Our experiments on several standard video sequences demonstrate the significant improvement in compression compared to the standard wavelet video coding.
引用
收藏
页码:3793 / 3796
页数:4
相关论文
共 50 条
  • [41] Video multicast using layered FEC and scalable compression
    Tan, WT
    Zakhor, A
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2001, 11 (03) : 373 - 386
  • [42] Enhanced image/video compression using diagonal divide
    Malik, H
    Naeem, F
    Arora, N
    ICCIMA 2005: Sixth International Conference on Computational Intelligence and Multimedia Applications, Proceedings, 2005, : 191 - 196
  • [43] Computer Network Redundancy Reduction Using Video Compression
    Habib, Shabana
    Albattah, Waleed
    Alsharekh, Mohammed F.
    Islam, Muhammad
    Shees, Mohammad Munawar
    Sherazi, Hammad I.
    SYMMETRY-BASEL, 2023, 15 (06):
  • [44] Video-Data Compression Using Wavelet Analysis
    Yamnenko, Iuliia
    Levehenko, Vitalii
    2019 IEEE 20TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING (CPEE), 2019, : 260 - 263
  • [45] Error Resilient Video Compression Using Behavior Models
    Jacco R. Taal
    Zhibo Chen
    Yun He
    R. (Inald) L. Lagendijk
    EURASIP Journal on Advances in Signal Processing, 2004
  • [46] Motion compensated video compression using adaptive transformations
    Diab, Z
    Cohen, P
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 2881 - 2884
  • [47] Optimizing video compression using robust parameter design
    Wojciechowski, E
    Phadke, MS
    GLOBECOM '01: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2001, : 2634 - 2639
  • [48] Traffic video compression system using wavelet analysis
    Cheng, TH
    Chen, CH
    MOBILE ROBOTS XIII AND INTELLIGENT TRANSPORTATION SYSTEMS, 1998, 3525 : 363 - 368
  • [49] Spectral Video Compression Using Convolutional Sparse Coding
    Barajas-Solano, C.
    Ramirez, J. M.
    Arguello, H.
    2020 DATA COMPRESSION CONFERENCE (DCC 2020), 2020, : 253 - 262
  • [50] Resilient video compression using absolute value coding
    Redmill, DW
    Bull, DR
    SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, 1999, (465): : 591 - 595