Multiphysics Simulation & Design of Silicon Quantum Dot Qubit Devices

被引:17
|
作者
Mohiyaddin, F. A. [1 ]
Simion, G. [1 ]
Stuyck, N. I. Dumoulin [1 ,2 ]
Li, R. [1 ]
Ciubotaru, F. [1 ]
Eneman, G. [1 ]
Bufler, F. M. [1 ,3 ]
Kubicek, S. [1 ]
Jussot, J. [1 ]
Chan, B. T. [1 ]
Ivanov, Ts. [1 ]
Spessot, A. [1 ]
Matagne, P. [1 ]
Lee, J. [1 ]
Govoreanu, B. [1 ]
Radu, I. P. [1 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Mat Engn MTM, Kasteelpk Arenberg 44, B-3001 Leuven, Belgium
[3] Swiss Fed Inst Technol, Inst Integrierte Syst, Gloriastr 35, CH-8092 Zurich, Switzerland
关键词
SPIN;
D O I
10.1109/iedm19573.2019.8993541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we combine multiphysics simulation methods to assemble a comprehensive design methodology for silicon qubit devices. Key device parameters are summarized by modeling device electrostatics, stress, micro-magnetics, band-structure and spin dynamics. Based on the models, we infer that highly confined single electron qubits in quantum dots, with large orbital energy separations, can be induced in Si-MOS structures with thin (t(OX) < 20 nm) gate oxides. We further advocate that poly-silicon gate material, in conjunction with small barrier gate widths (b < 30 nm), will reduce the impact of strain on qubit readout and two-qubit gate-operations. We optimized a micromagnet design to provide fast single-qubit gate times (similar to 100 ns), with minimal dephasing field gradients. Finally, we estimate that the exchange coupling between qubits is tunable by over 4 orders of magnitude, for two-qubit operations.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Quantum decoherence in qubit devices
    Brandt, HE
    OPTICAL ENGINEERING, 1998, 37 (02) : 600 - 609
  • [22] Quantum decoherence and qubit devices
    Brandt, HE
    NOISE AND INFORMATION IN NANOELECTRONICS, SENSORS AND STANDARDS, 2003, 5115 : 308 - 344
  • [23] All-electrical universal control of a double quantum dot qubit in silicon MOS
    Harvey-Collard, Patrick
    Jock, Ryan M.
    Jacobson, N. Tobias
    Baczewski, Andrew D.
    Mounce, Andrew M.
    Curry, Matthew J.
    Ward, Daniel R.
    Anderson, John M.
    Manginell, Ronald P.
    Wendt, Joel R.
    Rudolph, Martin
    Pluym, Tammy
    Lilly, Michael P.
    Pioro-Ladriere, Michel
    Carroll, Malcolm S.
    2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2017,
  • [24] Simulation of Si nanowire quantum-dot devices for authentication
    Carrillo-Nunez, Hamilton
    Wang, Chen
    Asenov, Asen
    Young, Robert
    Georgiev, Vihar
    2019 JOINT INTERNATIONAL EUROSOI WORKSHOP AND INTERNATIONAL CONFERENCE ON ULTIMATE INTEGRATION ON SILICON (EUROSOI-ULIS), 2019,
  • [25] Quantum dot devices
    Fafard, S
    Liu, HC
    Wasilewski, ZR
    McCaffrey, J
    Spanner, M
    Raymond, S
    Allen, CN
    Hinzer, K
    Lapointe, J
    Struby, C
    Gao, M
    Hawrylak, P
    Gould, C
    Sachrajda, A
    Zawadzki, P
    OPTOELECTRONIC MATERIALS AND DEVICES II, 2000, 4078 : 100 - 114
  • [26] Quantum Dot Devices
    Coleman, J. J.
    2011 37TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATIONS (ECOC 2011), 2011,
  • [27] Simulation and design of a superconducting qubit for the quantum wave mixing experiment
    Vasenin, Andrei
    Dmitriev, Aleksei
    Kadyrmetov, Shamil
    Astafiev, Oleg
    FIFTH INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES (ICQT-2019), 2020, 2241
  • [28] Silicon-based III-V quantum dot devices for silicon photonics
    Tang, Mingchu
    Chen, Siming
    Wu, Jiang
    Liao, Mengya
    Liu, Huiyun
    2016 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2016, : 118 - 119
  • [29] Electron transport through silicon multiple quantum dot array devices
    Yamahata, Gento
    Tsuchiya, Yoshishige
    Mizuta, Hiroshi
    Oda, Shunri
    2008 IEEE SILICON NANOELECTRONICS WORKSHOP, 2008, : 34 - +
  • [30] SILICON QUANTUM DOT OPTICAL PROPERTIES AND SYNTHESIS: IMPLICATIONS FOR PHOTOVOLTAIC DEVICES
    Lee, Benjamin G.
    Jariwala, Bhavin N.
    Collins, Reuben T.
    Agarwal, Sumit
    Stradins, Pauls
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 1827 - 1829