BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media

被引:40
|
作者
Akyurtlu, A [1 ]
Werner, DH
机构
[1] Univ Massachusetts, Lowell, MA 01854 USA
[2] Penn State Univ, University Pk, PA 16802 USA
关键词
bi-isotropic media; chiral media; finite-difference time-domain (FDTD) methods; recursive convolution;
D O I
10.1109/TAP.2004.823956
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a newly developed finite-difference time-domain (FDTD) technique, referred to as BI-FDTD, for modeling electromagnetic wave interactions with bi-isotropic (131) media. The theoretical foundation for the BI-FDTD method will be developed based on a wavefield decomposition. The main advantage of this approach is that the two sets of wavefields are uncoupled and can be viewed as propagating in an equivalent isotropic medium, which makes it possible to readily apply conventional FDTD analysis techniques. The BI-FDTD scheme will also be extended to include the dispersive nature of chiral media, an important subclass of bi-isotropic media. This extension represents the first of its kind in the FDTD community. Validations of this new model are demonstrated for a chiral half-space and a chiral slab.
引用
收藏
页码:416 / 425
页数:10
相关论文
共 50 条
  • [21] Finite-Difference Time-Domain (FDTD) Model for Traveling-Wave Photodetectors
    Kong, Soon-Cheol
    Choi, Young-Wan
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (11) : 2380 - 2387
  • [22] FDTD Modeling of transient microwave signals in dispersive and lossy Bi-isotropic media
    Grande, A
    Barba, I
    Cabeceira, ACL
    Represa, J
    So, PPM
    Hoefer, WJR
    2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, : 1141 - 1144
  • [23] PROPAGATION IN LINEAR DISPERSIVE MEDIA - FINITE-DIFFERENCE TIME-DOMAIN METHODOLOGIES
    YOUNG, JL
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1995, 43 (04) : 422 - 426
  • [24] Modeling of near-field sources in the finite-difference time-domain (FDTD)
    Potter, ME
    Stuchly, MA
    Okoniewski, M
    2001 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-7, 2001, : 885 - 891
  • [25] Development of accuracy-enhanced time-domain schemes for bi-isotropic media and chiral metamaterials
    Bouzianas, George
    Kantartzis, Nikolaos V.
    Tsiboukis, Theodoros D.
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (01) : 7 - 21
  • [26] Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation
    Fan, Na
    Zhao, Lian-Feng
    Xie, Xiao-Bi
    Ge, Zengxi
    Yao, Zhen-Xing
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (03) : 1539 - 1551
  • [27] CONFORMAL FINITE-DIFFERENCE TIME-DOMAIN (FDTD) WITH OVERLAPPING GRIDS
    YEE, KS
    CHEN, JS
    CHANG, AH
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (09) : 1068 - 1075
  • [28] Finite-Difference Time-Domain (FDTD) Algorithm for Multiblock Grids
    Kraeck, Veronika
    Hahn, Ingo
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2014, : 1179 - 1185
  • [29] A DISTRIBUTED IMPLEMENTATION OF THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD
    RODOHAN, DP
    SAUNDERS, SR
    GLOVER, RJ
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1995, 8 (3-4) : 283 - 291
  • [30] FINITE-DIFFERENCE TIME-DOMAIN (FDTD) ANALYSIS OF MAGNETIC DIFFUSION
    HOLLAND, R
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1994, 36 (01) : 32 - 39