A Calculus for Log-Convex Interference Functions

被引:12
|
作者
Boche, Holger [1 ,2 ,3 ]
Schubert, Martin [2 ]
机构
[1] Heinrich Hertz Inst Nachrichtentech Berlin GmbH, Fraunhofer Inst Telecommun, D-10587 Berlin, Germany
[2] German Sino Lab Mobile Commun MCI, D-10587 Berlin, Germany
[3] Tech Univ Berlin, D-10587 Berlin, Germany
关键词
Achievable region; interference function; log-convex; max-min fairness; multiuser wireless communication; quality-of-service (QoS);
D O I
10.1109/TIT.2008.2006427
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The behavior of certain interference-coupled multiuser systems can be modeled by means of logarithmically convex (log-convex) interference functions. In this paper, we show fundamental properties of this framework. A key observation is that any log-convex interference function can be expressed as an optimum over elementary log-convex interference functions. The results also contribute to a better understanding of certain quality-of-service (QoS) tradeoff regions, which can be expressed as sublevel sets of log-convex interference functions. We analyze the structure of the QoS region and provide conditions for the achievability of boundary points. The proposed framework of log-convex interference functions generalizes the classical linear interference model, which is closely connected with the theory of irreducible nonnegative matrices (Perron-Frobenius theory). We discuss some possible applications in robust communication, cooperative game theory, and max-min fairness.
引用
收藏
页码:5469 / 5490
页数:22
相关论文
共 50 条
  • [21] Some weighted trapezoidal inequalities for differentiable log-convex functions
    Meftah, B.
    Mekalfa, K.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (03) : 505 - 517
  • [22] The Log-Convex Density Conjecture
    Morgan, Frank
    CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 209 - 211
  • [23] A note on integral inequalities involving two log-convex functions
    Pachpatte, BG
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (04): : 511 - 515
  • [24] SOME INTEGRAL INEQUALITIES FOR PRODUCT OF HARMONIC log-CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Iftikhar, Sabah
    Ionescu, Cristiana
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 11 - 20
  • [25] INTEGRAL MEANS OF HOLOMORPHIC FUNCTIONS AS GENERIC LOG-CONVEX WEIGHTS
    Doubtsov, Evgueni
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (01) : 88 - 93
  • [26] A NOTE ON INTEGRAL INEQUALITIES OF HADAMARD TYPE FOR LOG-CONVEX AND LOG-CONCAVE FUNCTIONS
    Yang, Gou-Sheng
    Tseng, Kuei-Lin
    Wang, Hung-Ta
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 479 - 496
  • [27] On upper Hermite-Hadamard inequalities for geometric-convex and log-convex functions
    Sandor, Jozsef
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (05) : 25 - 30
  • [28] On the roots of polynomials with log-convex coefficients
    Hernandez Cifre, Maria A.
    Tarraga, Miriam
    Yepes Nicolas, Jesus
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 470 - 493
  • [29] Some Weighted Midpoint Type Inequalities For Differentiable log-Convex Functions
    Meftah, Badreddine
    Benchettah, Djaber Chemseddine
    Lakhdari, Abdelghani
    Merad, Meriem
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [30] Nash bargaining for log-convex problems
    Qin, Cheng-Zhong
    Shi, Shuzhong
    Tan, Guofu
    ECONOMIC THEORY, 2015, 58 (03) : 413 - 440