Deep Compressive Macroscopic Fluorescence Lifetime Imaging

被引:0
|
作者
Yao, Ruoyang [1 ]
Ochoa, Marien [1 ]
Intes, Xavier [1 ]
Yan, Pingkun [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
关键词
Fluorescence Lifetime Imaging; Single-pixel Imaging; Compressive Sensing; Convolutional Neural Network; Deep Learning;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Compressive Macroscopic Fluorescence Lifetime Imaging (MFLI) is a novel technical implementation that enables monitoring multiple molecular interactions in macroscopic scale. Especially, we reported recently on the development of a hyperspectral widefield time-resolved single-pixel imaging platform that facilitates whole-body in vivo lifetime imaging in less than 14 minutes. However, despite efficient data acquisition, the data processing of a Compressed Sensing (CS) based inversion plus lifetime fitting remain very time consuming. Herein, we propose to investigate the potential of deep learning for fast and accurate image formation. More precisely we developed a Convolutional Neural Network (CNN) called Net-FLICS (Network for Fluorescence Lifetime Imaging with Compressive Sensing) that reconstructs both intensity and lifetime images directly from raw CS measurements. Results show that better quality reconstruction can be obtained using Net-FLICS, for both simulation and experimental dataset, with almost negligible time compared to the traditional analytic methods. This first investigation suggests that Net-FLICS may be a powerful tool to enable CS-based lifetime imaging for real-time applications.
引用
收藏
页码:908 / 911
页数:4
相关论文
共 50 条
  • [21] Spatial resolution improved fluorescence lifetime imaging via deep learning
    Xiao, Dong
    Zang, Zhenya
    Xie, Wujun
    Sapermsap, Natakorn
    Chen, Yu
    Li, David Day Uei
    OPTICS EXPRESS, 2022, 30 (07) : 11479 - 11494
  • [22] Fluorescence lifetime imaging for deep-seated fluorophore in turbid medium
    Khilov, A. V.
    Fiks, I. I.
    Plekhanov, V. I.
    Kirillin, M. Yu.
    Turchin, I. V.
    OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE XI, 2015, 9319
  • [23] Simple and Robust Deep Learning Approach for Fast Fluorescence Lifetime Imaging
    Wang, Quan
    Li, Yahui
    Xiao, Dong
    Zang, Zhenya
    Jiao, Zi'ao
    Chen, Yu
    Li, David Day Uei
    SENSORS, 2022, 22 (19)
  • [24] Deep learning enhanced fast fluorescence lifetime imaging with a few photons
    Xiao, Dong
    Sapermsap, Natakorn
    Chen, Yu
    Li, David Day Uei
    OPTICA, 2023, 10 (07): : 944 - 951
  • [25] Fluorescence Lifetime Imaging Endoscopy
    Kennedy, G. T.
    Coda, S.
    Thompson, A. J.
    Elson, D. S.
    Neil, M. A. A.
    Stamp, G. W.
    Thillainayagam, A.
    Viellerobe, B.
    Lacombe, F.
    Dunsby, C.
    French, P. M. W.
    ENDOSCOPIC MICROSCOPY VI, 2011, 7893
  • [26] Fluorescence lifetime imaging ophthalmoscopy
    Dysli, Chantal
    Wolf, Sebastian
    Berezin, Mikhail Y.
    Sauer, Lydia
    Hammer, Martin
    Zinkernagel, Martin S.
    PROGRESS IN RETINAL AND EYE RESEARCH, 2017, 60 : 120 - 143
  • [27] Stroboscopic fluorescence lifetime imaging
    Holton, Mark D.
    Silvestre, Oscar R.
    Errington, Rachel J.
    Smith, Paul J.
    Matthews, Daniel R.
    Rees, Paul
    Summers, Huw D.
    OPTICS EXPRESS, 2009, 17 (07): : 5205 - 5216
  • [28] Fluorescence lifetime imaging in a flame
    Ehn, A.
    Johansson, O.
    Bood, J.
    Arvidsson, A.
    Li, B.
    Alden, M.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 807 - 813
  • [29] Fluorescence lifetime imaging microscopy
    Chang, Ching-Wei
    Sud, Dhruv
    Mycek, Mary-Ann
    DIGITAL MICROSCOPY, 3RD EDITION, 2007, 81 : 495 - +
  • [30] Fluorescence lifetime imaging microscopy
    Cole, MJ
    Siegel, J
    Jones, R
    Webb, SED
    Gu, Y
    French, PMW
    Lever, MJ
    Neil, MAA
    Juskaitis, R
    Wilson, T
    BIOMEDICAL TOPICAL MEETINGS, TECHNICAL DIGEST, 2000, 38 : 310 - 312