Surface-enhanced Raman scattering effect of gold nanoparticle arrays: The influence of annealing temperature, excitation power and array thickness

被引:9
|
作者
Liu, G. Q. [1 ,4 ]
Liu, Z. Q. [2 ,3 ]
Chen, Y. H. [1 ,4 ]
Huang, K. [1 ,4 ]
Li, L. [1 ,4 ]
Tang, F. L. [1 ,4 ]
Gong, L. X. [1 ,4 ]
Hu, Y. [1 ,4 ]
Zhang, X. N. [1 ,4 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Key Lab Optoelect & Telecommun Jiangxi, Nanchang 330022, Peoples R China
来源
OPTIK | 2013年 / 124卷 / 21期
基金
中国国家自然科学基金;
关键词
Surface-enhanced Raman scattering; Optical material and property; Metal forming and shaping; SERS;
D O I
10.1016/j.ijleo.2013.03.048
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gold nanoparticle arrays are fabricated for surface-enhanced Raman scattering (SERS) and the effect of the annealing temperature, the thickness of nanoparticle array and the exciting power on the SERS signals are investigated. The particle distribution and particle size are dense and uniform on the glass substrate when the 10 nm gold film was annealed at 250 degrees C and strong SERS signals for Rhodamine 6G were achieved via a 532 nm excitation with a 10 mW power. The SERS signal at 1650 cm(-1) is enhanced more than 10 times as compared to that of the gold film without annealing. The strong SERS behavior of gold nanoparticle arrays may broaden the SERS applications in biomedical and analytical chemistry. (C) 2013 Elsevier GmbH. All rights reserved.
引用
收藏
页码:5124 / 5126
页数:3
相关论文
共 50 条
  • [21] Excitation Conditions for Surface-Enhanced Hyper Raman Scattering With Biocompatible Gold Nanosubstrates
    Dusa, Arpad
    Madzharova, Fani
    Kneipp, Janina
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [22] Surface-enhanced Raman scattering activities of gold nanocap arrays and hollow gold nanocap particles
    Li, Yun-Xiang
    Man, Shi-Qing
    Zhang, Hai-Tao
    Gao, Jie
    Wu, Tian-Xiong
    Le, Xin
    Xiao, Gui-Na
    SPECTROSCOPY LETTERS, 2016, 49 (06) : 413 - 419
  • [23] Mixed metal nanoparticle assembly and the effect on surface-enhanced Raman scattering
    McKenzie, Fiona
    Faulds, Karen
    Graham, Duncan
    NANOSCALE, 2010, 2 (01) : 78 - 80
  • [24] Gold Nanorod Arrays: Excitation of Transverse Plasmon Modes and Surface-Enhanced Raman Applications
    Mirza, Jeff
    Martens, Isaac
    Gruesser, Martin
    Bizzotto, Dan
    Schuster, Rolf
    Lipkowski, Jacek
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (29): : 16246 - 16253
  • [25] Diameter Effect of Silver Nanorod Arrays to Surface-enhanced Raman Scattering
    Gu, Geun Hoi
    Kim, Min Young
    Yoon, Hyeok Jin
    Suh, Jung Sang
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2014, 35 (03): : 725 - 730
  • [26] Template assisted deposition of Ag nanoparticle arrays for surface-enhanced Raman scattering applications
    Lombardi, I.
    Cavallotti, P. L.
    Carraro, C.
    Maboudian, R.
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 125 (02) : 353 - 356
  • [27] Gold nanoparticle-coated silicon cone array for surface-enhanced Raman spectroscopy
    Lai, Chun-Hong
    Chen, Gang
    Chen, Li
    Zhang, XiaoSheng
    Zhang, HaiXia
    Xu, Yi
    SPECTROSCOPY LETTERS, 2016, 49 (01) : 51 - 55
  • [28] Role of nanoparticle surface charge in surface-enhanced Raman scattering
    Alvarez-Puebla, RA
    Arceo, E
    Goulet, PJG
    Garrido, JJ
    Aroca, RF
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (09): : 3787 - 3792
  • [30] Binding of aromatic isocyanides on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering
    Joo, SW
    Kim, WJ
    Yun, WS
    Hwang, S
    Choi, IS
    APPLIED SPECTROSCOPY, 2004, 58 (02) : 218 - 223