Bulk behavior of Schur-Hadamard products of symmetric random matrices

被引:3
|
作者
Bose, Arup [1 ]
Mukherjee, Soumendu Sundar [2 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, 203 BT Rd, Kolkata 700108, India
[2] Indian Stat Inst, Kolkata 700108, India
关键词
Patterned matrices; Schur-Hadamard product; limiting spectral distribution; Toeplitz; Wigner; Hankel; Circulant matrices; semi-circular law;
D O I
10.1142/S2010326314500075
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a general method for establishing the existence of the Limiting Spectral Distributions (LSD) of Schur-Hadamard products of independent symmetric patterned random matrices. We apply this method to show that the LSD of Schur-Hadamard products of some common patterned matrices exist and identify the limits. In particular, the Schur-Hadamard product of independent Toeplitz and Hankel matrices has the semicircular LSD. We also prove an invariance theorem that may be used to find the LSD in many examples.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Symmetric and skew equivalence of Hadamard matrices of order 28
    Baartmans, AH
    Lin, C
    Wallis, WD
    ARS COMBINATORIA, 1995, 41 : 25 - 31
  • [22] Symmetric Hadamard matrices of order 116 and 172 exist
    Di Matteo, Olivia
    Dokovic, Dragomir Z.
    Kotsireas, Ilias S.
    SPECIAL MATRICES, 2015, 3 (01): : 227 - 234
  • [23] Eigenvalues of Hadamard powers of large symmetric Pascal matrices
    Ashrafi, A
    Gibson, PM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 : 60 - 66
  • [24] Products of random matrices
    Jackson, AD
    Lautrup, B
    Johansen, P
    Nielsen, M
    PHYSICAL REVIEW E, 2002, 66 (06): : 5
  • [25] PRODUCTS OF RANDOM MATRICES
    GUIVARCH, Y
    JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) : 279 - 279
  • [26] Bounds on the number of affine, symmetric, and Hadamard designs and matrices
    Lam, C
    Lam, S
    Tonchev, VD
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (02) : 186 - 196
  • [27] On Products of Random Matrices
    Amburg, Natalia
    Orlov, Aleksander
    Vasiliev, Dmitry
    ENTROPY, 2020, 22 (09)
  • [29] Bush-type Hadamard matrices and symmetric designs
    Janko, Z
    Kharaghani, H
    Tonchev, VD
    JOURNAL OF COMBINATORIAL DESIGNS, 2001, 9 (01) : 72 - 78
  • [30] ON PRODUCTS OF RANDOM MATRICES
    TUTUBALI.VN
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (02): : 370 - &