Distortion of quasiconformal maps in terms of the quasihyperbolic metric

被引:7
|
作者
Soultanis, Elefterios [1 ]
Williams, Marshall [2 ]
机构
[1] Univ Helsinki, FI-00014 Helsinki, Finland
[2] Univ Jyvaskyla, Dept Math, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
Metric measure spaces; Spaces of Q-bounded geometry; Quasiconformal maps; Quasihyperbolic metric;
D O I
10.1016/j.jmaa.2013.01.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend a theorem of Gehring and Osgood from 1979 - relating to the distortion of the quasihyperbolic metric by a quasiconformal mapping between Euclidean domains - to the setting of metric measure spaces of Q-bounded geometry. When the underlying target space is bounded, we require that the boundary of the image has at least two points. We show that even in the manifold setting, this additional assumption is necessary. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:626 / 634
页数:9
相关论文
共 50 条
  • [21] DISTORTION IN QUASICONFORMAL MAPPINGS
    GAVRILOV, V
    DOKLADY AKADEMII NAUK SSSR, 1961, 137 (06): : 1278 - &
  • [22] Quasihyperbolic mappings in length metric spaces
    Zhou, Qingshan
    Li, Yaxiang
    He, Yuehui
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (03) : 237 - 247
  • [23] The quasihyperbolic metric, growth, and John domains
    Langmeyer, N
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1998, 23 (01): : 205 - 224
  • [24] Domains with growth conditions for the quasihyperbolic metric
    Yasuhiro Gotoh
    Journal d’Analyse Mathématique, 2000, 82 : 149 - 173
  • [25] A decomposition for plane domains with the quasihyperbolic metric
    Gonzalo, Jesus
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
  • [26] Domains with growth conditions for the quasihyperbolic metric
    Gotoh, Y
    JOURNAL D ANALYSE MATHEMATIQUE, 2000, 82 (1): : 149 - 173
  • [27] On quasiconformal harmonic maps
    Tam, LF
    Wan, TYH
    PACIFIC JOURNAL OF MATHEMATICS, 1998, 182 (02) : 359 - 383
  • [28] HARDY-LITTLEWOOD PROPERTY AND α-QUASIHYPERBOLIC METRIC
    Kim, Ki Won
    Ryu, Jeong Seog
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 243 - 250
  • [29] DISTORTION IN THE METRIC CHARACTERIZATION OF SUPERREFLEXIVITY IN TERMS OF THE INFINITE BINARY TREE
    Ostrovska, Sofiya
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (02): : 421 - 431
  • [30] LOCAL PROPERTIES OF QUASIHYPERBOLIC MAPPINGS IN METRIC SPACES
    Huang, Xiaojun
    Liu, Hongjun
    Liu, Jinsong
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 23 - 40