PAC Learning and Genetic Programming

被引:0
|
作者
Koetzing, Timo [1 ]
Neumann, Frank [2 ]
Soephel, Reto [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
关键词
Genetic Programming; PAC Learning; Theory; Runtime Analysis;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Genetic programming (GP) is a very successful type of learning algorithm that is hard to understand from a theoretical point of view. With this paper we contribute to the computational complexity analysis of genetic programming that has been started recently. We analyze GP in the well-known PAC learning framework and point out how it can observe quality changes in the the evolution of functions by random sampling. This leads to computational complexity bounds for a linear GP algorithm for perfectly learning any member of a simple class of linear pseudo-Boolean functions. Furthermore, we show that the same algorithm on the functions from the same class finds good approximations of the target function in less time.
引用
收藏
页码:2091 / 2096
页数:6
相关论文
共 50 条
  • [21] Genetic Programming for Image Feature Descriptor Learning
    Price, Stanton R.
    Anderson, Derek T.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 854 - 860
  • [22] Active Learning Genetic Programming for Record Deduplication
    de Freitas, Junio
    Pappa, Gisele L.
    da Silva, Altigran S.
    Goncalves, Marcos A.
    Moura, Edleno
    Veloso, Adriano
    Laender, Alberto H. F.
    de Carvalho, Moises G.
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [23] Multitask Visual Learning Using Genetic Programming
    Jaskowski, Wojciech
    Krawiec, Krzysztof
    Wieloch, Bartosz
    EVOLUTIONARY COMPUTATION, 2008, 16 (04) : 439 - 459
  • [24] On the Transfer Learning of Genetic Programming Classification Algorithms
    Nyathi, Thambo
    Pillay, Nelishia
    THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2021), 2021, 13082 : 47 - 58
  • [25] Bayesian methods for evolution of learning by genetic programming
    Akira, Y
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 923 - 926
  • [26] Learning feature spaces for regression with genetic programming
    William La Cava
    Jason H. Moore
    Genetic Programming and Evolvable Machines, 2020, 21 : 433 - 467
  • [27] Genetic Programming for Ensemble Learning in Face Recognition
    Zhang, Tian
    Ma, Lianbo
    Liu, Qunfeng
    Li, Nan
    Liu, Yang
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2022, PT II, 2022, : 209 - 218
  • [28] Transfer learning in constructive induction with Genetic Programming
    Munoz, Luis
    Trujillo, Leonardo
    Silva, Sara
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2020, 21 (04) : 529 - 569
  • [29] Online learning of Genetic Network Programming (GNP)
    Mabu, S
    Hirasawa, K
    Hu, JL
    Murata, J
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 321 - 326
  • [30] Coevolution and linear genetic programming for visual learning
    Krawiec, K
    Bhanu, B
    GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS, 2003, 2723 : 332 - 343