Heart Diseases Image Classification Based on Convolutional Neural Network

被引:1
|
作者
Saito, Keita [1 ]
Zhao, Yanjun [1 ]
Zhong, Jiling [1 ]
机构
[1] Troy Univ, Dept Comp Sci, Troy, AL 36082 USA
关键词
heart diseases image clasification; deep learning; convolutional neural network (CNN); transfer learning; pre-trained networks;
D O I
10.1109/CSCI49370.2019.00177
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, deep learning, especially convolutional neural network (CNN), has been widely applied in imaging and computer vision application due to the good accuracy in image classification and pattern recognition tasks. In this paper, a simple CNN model is built for heart diseases image classification. This simple CNN model is directly trained by the heart diseases images without using transfer learning of the pre-trained networks. The pre-trained networks such as AlexNet and GoogLeNet have been widely used in image processing applications. However, these pre-trained networks are trained by non-medical images; non-medical images and medical images have significant differences. Therefore, the CNN models using transfer learning of these pre-trained networks may not be an optimized option for medical image processing. In this paper, our simple CNN model and the CNN models based on these pre-trained networks are applied for heart diseases image classification respectively. The simulation result demonstrates that our simple CNN model achieves higher image classification accuracy and less training time. Our paper provides a clue that a simple CNN model directly trained by medical images may be a better option for medical image processing, compared with the CNN models using transfer learning of the pre-trained networks trained by non-medical images.
引用
收藏
页码:930 / 935
页数:6
相关论文
共 50 条
  • [21] A Convolutional Fuzzy Neural Network for Image Classification
    Korshunova, Kseniya P.
    PROCEEDINGS OF THE 2018 3RD RUSSIAN-PACIFIC CONFERENCE ON COMPUTER TECHNOLOGY AND APPLICATIONS (RPC), 2018,
  • [22] A Quantum Convolutional Neural Network for Image Classification
    Lu, Yanxuan
    Gao, Qing
    Lu, Jinhu
    Ogorzalek, Maciej
    Zheng, Jin
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6329 - 6334
  • [23] Shallow convolutional neural network for image classification
    Fangyuan Lei
    Xun Liu
    Qingyun Dai
    Bingo Wing-Kuen Ling
    SN Applied Sciences, 2020, 2
  • [24] Tongue Image Texture Classification Based on Image Inpainting and Convolutional Neural Network
    Yan J.
    Chen B.
    Guo R.
    Zeng M.
    Yan H.
    Xu Z.
    Wang Y.
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [25] Simple Convolutional Neural Network on Image Classification
    Guo, Tianmei
    Dong, Jiwen
    Li, Henjian
    Gao, Yunxing
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 721 - 724
  • [26] Quantum convolutional neural network for image classification
    Chen, Guoming
    Chen, Qiang
    Long, Shun
    Zhu, Weiheng
    Yuan, Zeduo
    Wu, Yilin
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 655 - 667
  • [27] Shallow convolutional neural network for image classification
    Lei, Fangyuan
    Liu, Xun
    Dai, Qingyun
    Ling, Bingo Wing-Kuen
    SN APPLIED SCIENCES, 2020, 2 (01):
  • [28] Food Image Classification with Convolutional Neural Network
    Islam, Md Tohidul
    Siddique, B. M. Nafiz Karim
    Rahman, Sagidur
    Jabid, Taskeed
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 257 - +
  • [29] Diagnostic Accuracies of Laryngeal Diseases Using a Convolutional Neural Network-Based Image Classification System
    Cho, Won Ki
    Lee, Yeong Ju
    Joo, Hye Ah
    Jeong, In Seong
    Choi, Yeonjoo
    Nam, Soon Yuhl
    Kim, Sang Yoon
    Choi, Seung-Ho
    LARYNGOSCOPE, 2021, 131 (11): : 2558 - 2566
  • [30] Medical Image Classification with Convolutional Neural Network
    Li, Qing
    Cai, Weidong
    Wang, Xiaogang
    Zhou, Yun
    Feng, David Dagan
    Chen, Mei
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 844 - 848