Numerical solution of 2-D scattering problems using high-order methods

被引:26
|
作者
Hamilton, LR [1 ]
Ottusch, JJ
Stalzer, MA
Turley, RS
Visher, JL
Wandzura, SM
机构
[1] HRL Labs, Informat Sci Labs, Computat Phys Dept, Malibu, CA 90265 USA
[2] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
关键词
boundary integral equation; electromagnetic scattering; high-order numerical method; method of moments;
D O I
10.1109/8.768808
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate that a method of moments scattering code employing high-order methods can compute accurate values for the scattering cross section of a smooth body more efficiently than a scattering code employing standard low-order methods. Use of a high-order code also makes it practical to provide meaningful accuracy estimates for computed solutions.
引用
收藏
页码:683 / 691
页数:9
相关论文
共 50 条
  • [31] Fast BEM Solution for 2-D Scattering Problems Using Quantized Tensor-Train Format
    Poirier, J. -R.
    Coulaud, O.
    Kaya, O.
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (03)
  • [32] A High-Order 2-D CPITD Method for Electrically Large Waveguide Analysis
    Kang, Zhen
    Ma, Xikui
    Liu, Qi
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (02) : 83 - 85
  • [33] High-order finite elements for the solution of Helmholtz problems
    Christodoulou, K.
    Laghrouche, O.
    Mohamed, M. S.
    Trevelyan, J.
    COMPUTERS & STRUCTURES, 2017, 191 : 129 - 139
  • [34] Numerical solution of high-order differential equations by using periodized Shannon wavelets
    Shi, Zhi
    Li, Fumin
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (7-8) : 2235 - 2248
  • [35] Iterative methods and high-order difference schemes for 2D elliptic problems with mixed derivative
    Fournié M.
    Karaa S.
    J. Appl. Math. Comp., 2006, 3 (349-363): : 349 - 363
  • [36] NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .2. NONLINEAR BOUNDARY CONDITIONS
    CIARLET, PG
    SCHULTZ, MH
    VARGA, RS
    NUMERISCHE MATHEMATIK, 1968, 11 (04) : 331 - &
  • [37] High-order basis functions for the moment method solution of two-dimensional scattering problems
    Zhang, Jin-Ping
    Xu, Yun-Sheng
    Wang, Wei-Dong
    2005 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS, VOLS 1-5, 2005, : 2881 - 2884
  • [38] A fast, high-order algorithm for the solution of surface scattering problems: Basic implementation, tests, and applications
    Bruno, OP
    Kunyansky, LA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (01) : 80 - 110
  • [39] Fast and High-Order Accuracy Numerical Methods for Time-Dependent Nonlocal Problems in R2
    Cao, Rongjun
    Chen, Minghua
    Ng, Michael K.
    Wu, Yu-Jiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
  • [40] High-order numerical methods for engineering turbulence simulation
    Wang S.
    Deng X.
    Dong Y.
    Wang D.
    Cai J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (15):