We consider the Dirichlet problem {-Delta u + lambda u = u(p) in ohm u = 0 on partial derivative ohm, (1) with ohm subset of R-N, N >= 3, a bounded domain, with p >= N vertical bar 2/N 2, in the regime lambda -> +infinity. In this paper, we study the asymptotic behavior of positive solutions of (1) and we obtain that solutions of (1) cannot have uniformly bounded Morse index as lambda -> +infinity as long as p < p(JL)( N), the so-called Joseph-Lundgren exponent. (c) 2012 Elsevier Ltd. All rights reserved.
机构:
Georgia Inst Technol, George Woodruff Sch Mech Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, George Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
Jarrahbashi, D.
Pidaparti, S. R.
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, George Woodruff Sch Mech Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, George Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
Pidaparti, S. R.
Ranjan, D.
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, George Woodruff Sch Mech Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, George Woodruff Sch Mech Engn, Atlanta, GA 30332 USA