Phase transitions and computational difficulty in random constraint satisfaction problems

被引:11
|
作者
Krzakala, Florent [1 ]
Zdeborova, Lenka [2 ]
机构
[1] UMR Gulliver 7083 CNRS ESPCI, PCT, 10 Rue Vauquelin, F-75231 Paris, France
[2] Univ Paris 11, CNRS, LPTMS, F-91405 Orsay, France
关键词
D O I
10.1088/1742-6596/95/1/012012
中图分类号
O59 [应用物理学];
学科分类号
摘要
We review the understanding of the random constraint satisfaction problems, focusing on the q-coloring of large random graphs, that has been achieved using the cavity method. We also discuss the properties of the phase diagram in temperature, the connections with the glass transition phenomenology in physics, and the related algorithmic issues.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A general model and thresholds for random constraint satisfaction problems
    Fan, Yun
    Shen, Jing
    Xu, Ke
    ARTIFICIAL INTELLIGENCE, 2012, 193 : 1 - 17
  • [32] Frozen variables in random boolean constraint satisfaction problems
    Molloy, Michael
    Restrepo, Ricardo
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1306 - 1318
  • [33] Hiding Quiet Solutions in Random Constraint Satisfaction Problems
    Krzakala, Florent
    Zdeborova, Lenka
    PHYSICAL REVIEW LETTERS, 2009, 102 (23)
  • [34] An average analysis of backtracking on random constraint satisfaction problems
    Xu, K
    Li, W
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2001, 33 (01) : 21 - 37
  • [35] Bounding the scaling window of random constraint satisfaction problems
    Jing Shen
    Yaofeng Ren
    Journal of Combinatorial Optimization, 2016, 31 : 786 - 801
  • [36] Balanced Random Constraint Satisfaction: Phase Transition and Hardness
    Liu, Tian
    Wang, Chaoyi
    Xu, Wei
    FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 : 238 - 250
  • [37] Improving the computational efficiency in symmetrical numeric constraint satisfaction problems
    Gasca, R. M.
    Del Valle, C.
    Cejudo, V.
    Barba, I.
    CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2006, 4177 : 269 - 279
  • [38] The SAT-UNSAT transition for random constraint satisfaction problems
    Creignou, Nadia
    Daude, Herve
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2085 - 2099
  • [39] Gibbs states and the set of solutions of random constraint satisfaction problems
    Krzakala, Florent
    Montanari, Andrea
    Ricci-Tersenghi, Federico
    Semerjian, Guilhem
    Zdeborova, Lenka
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (25) : 10318 - 10323
  • [40] A Dichotomy Theorem for the Resolution Complexity of Random Constraint Satisfaction Problems
    Chan, Siu On
    Molloy, Michael
    PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 634 - 643