A note on compatibility for inference with missing data in the presence of auxiliary covariates

被引:0
|
作者
Daniels, Michael J. [1 ]
Luo, Xuan [1 ]
机构
[1] Univ Florida, Coll Liberal Arts & Sci, Dept Stat, 102 Griffin Floyd Hall,POB 118545, Gainesville, FL 32611 USA
基金
美国国家卫生研究院;
关键词
compatible models; ignorability; missingness; multiple imputation; uncongenial; MULTIPLE IMPUTATION; CLINICAL-TRIALS; IMPROVING EFFICIENCY; MODELS;
D O I
10.1002/sim.8025
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Imputation and inference (or analysis) models that cannot be true simultaneously are frequently used in practice when missing outcomes are present. In these situations, the conclusions can be misleading depending on how "different" the implicit inference model, induced by the imputation model, is from the inference model actually used. We introduce model-based compatibility (MBC) and compare two MBC approaches to a non-MBC approach and explore the inferential validity of the latter in a simple case. In addition, we evaluate more complex cases through a series of simulation studies. Overall, we recommend caution when making inferences using a non-MBC analysis and point out when the inferential "cost" is the largest.
引用
收藏
页码:1190 / 1199
页数:10
相关论文
共 50 条
  • [31] Maximum likelihood inference for the Cox regression model with applications to missing covariates
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Shao, Qi-Man
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (09) : 2018 - 2030
  • [32] Robust inference for mixed censored and binary response models with missing covariates
    Sarkar, Angshuman
    Das, Kalyan
    Sinha, Sanjoy K.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (05) : 1836 - 1853
  • [33] Bayesian nonparametric generative models for causal inference with missing at random covariates
    Roy, Jason
    Lum, Kirsten J.
    Zeldow, Bret
    Dworkin, Jordan D.
    Re, Vincent Lo
    Daniels, Michael J.
    BIOMETRICS, 2018, 74 (04) : 1193 - 1202
  • [34] Missing data and auxiliary information in surveys
    Rueda, M
    González, S
    COMPUTATIONAL STATISTICS, 2004, 19 (04) : 551 - 567
  • [35] INFERENCE AND MISSING DATA - REPLY
    LITTLE, RJA
    BIOMETRIKA, 1976, 63 (03) : 590 - 591
  • [36] Missing data and auxiliary information in surveys
    M. Rueda
    S. González
    Computational Statistics, 2004, 19 : 551 - 567
  • [37] Estimation of genetic risk function with covariates in the presence of missing genotypes
    Lee, Annie J.
    Marder, Karen
    Alcalay, Roy N.
    Mejia-Santana, Helen
    Orr-Urtreger, Avi
    Giladi, Nir
    Bressman, Susan
    Wang, Yuanjia
    STATISTICS IN MEDICINE, 2017, 36 (22) : 3533 - 3546
  • [38] Two-step semiparametric empirical likelihood inference from capture-recapture data with missing covariates
    Liu, Yang
    Liu, Yukun
    Li, Pengfei
    Zhang, Riquan
    TEST, 2024, 33 (03) : 786 - 808
  • [39] Multiple imputation of censored survival data in the presence of missing covariates using restricted mean survival time
    Grover, Gurprit
    Gupta, Vinay K.
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 817 - 827
  • [40] Analysis on binary responses with ordered covariates and missing data
    Taylor, Jeremy M. G.
    Wang, Lu
    Li, Zhiguo
    STATISTICS IN MEDICINE, 2007, 26 (18) : 3443 - 3458