A note on compatibility for inference with missing data in the presence of auxiliary covariates

被引:0
|
作者
Daniels, Michael J. [1 ]
Luo, Xuan [1 ]
机构
[1] Univ Florida, Coll Liberal Arts & Sci, Dept Stat, 102 Griffin Floyd Hall,POB 118545, Gainesville, FL 32611 USA
基金
美国国家卫生研究院;
关键词
compatible models; ignorability; missingness; multiple imputation; uncongenial; MULTIPLE IMPUTATION; CLINICAL-TRIALS; IMPROVING EFFICIENCY; MODELS;
D O I
10.1002/sim.8025
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Imputation and inference (or analysis) models that cannot be true simultaneously are frequently used in practice when missing outcomes are present. In these situations, the conclusions can be misleading depending on how "different" the implicit inference model, induced by the imputation model, is from the inference model actually used. We introduce model-based compatibility (MBC) and compare two MBC approaches to a non-MBC approach and explore the inferential validity of the latter in a simple case. In addition, we evaluate more complex cases through a series of simulation studies. Overall, we recommend caution when making inferences using a non-MBC analysis and point out when the inferential "cost" is the largest.
引用
收藏
页码:1190 / 1199
页数:10
相关论文
共 50 条
  • [1] Fully Bayesian Inference under Ignorable Missingness in the Presence of Auxiliary Covariates
    Daniels, M. J.
    Wang, C.
    Marcus, B. H.
    BIOMETRICS, 2014, 70 (01) : 62 - 72
  • [2] A SEMIPARAMETRIC INFERENCE TO REGRESSION ANALYSIS WITH MISSING COVARIATES IN SURVEY DATA
    Yang, Shu
    Kim, Jae Kwang
    STATISTICA SINICA, 2017, 27 (01) : 261 - 285
  • [3] Changepoint inference in the presence of missing covariates for principal surrogate evaluation in vaccine trials
    Yang, Tao
    Huang, Ying
    Fong, Youyi
    BIOMETRIKA, 2021, 108 (04) : 829 - 843
  • [4] Missing covariates in longitudinal data with informative dropouts: Bias analysis and inference
    Roy, J
    Lin, XH
    BIOMETRICS, 2005, 61 (03) : 837 - 846
  • [5] Univariate nonparametric regression in the presence of auxiliary covariates
    Efromovich, S
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1185 - 1201
  • [6] Inference using conditional logistic regression with missing covariates
    Lipsitz, SR
    Parzen, M
    Ewell, M
    BIOMETRICS, 1998, 54 (01) : 295 - 303
  • [7] Semiparametric inference for estimating equations with nonignorably missing covariates
    Chen, Ji
    Fang, Fang
    Xiao, Zhiguo
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (03) : 796 - 812
  • [8] Theory and inference for regression models with missing responses and covariates
    Chen, Qingxia
    Ibrahim, Joseph G.
    Chen, Ming-Hui
    Senchaudhuri, Pralay
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (06) : 1302 - 1331
  • [9] Inference using conditional logistic regression with missing covariates
    Lipsitz, S. R.
    Parzen, M.
    Ewell, M.
    Biometrics, 54 (01):
  • [10] QUANTITATIVE GENETIC MODELING AND INFERENCE IN THE PRESENCE OF NONIGNORABLE MISSING DATA
    Steinsland, Ingelin
    Larsen, Camilla Thorrud
    Roulin, Alexandre
    Jensen, Henrik
    EVOLUTION, 2014, 68 (06) : 1735 - 1747