Control of a Thermoelectric Brain Cooler by Adaptive Neuro-Fuzzy Inference System

被引:10
|
作者
Ahiska, R. [1 ]
Yavuz, A. H. [2 ]
Kaymaz, M. [3 ]
Guler, I. [1 ]
机构
[1] Gazi Univ, Dept Elect & Comp Educ, Ankara, Turkey
[2] Gaziosmanpasa Univ, Dept Elect & Comp, Niksar MYO, Niksar, Tokat, Turkey
[3] Gazi Univ, Dept Nuerosurg, Ankara, Turkey
关键词
ANFIS; Fuzzy logic; Hypothermia; Neuro-fuzzy; Thermoelectric;
D O I
10.1080/10739140802451287
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, neuro-fuzzy control of a thermoelectric head cooler system (thermoelectric helmet) is developed for brain hypothermia applications. Hypothermia is a medical treatment method of protecting the brain, in which the temperature of the brain drops below the critical level for reducing oxygen consumption of tissues. The brain should be kept at a certain temperature by a suitable control for hypothermia applications. The temperature of the thermoelectric head cooler system changes according to the current intensity supplied. The control of the thermoelectric head cooler system was performed according to the initial membership functions, which was determined by an expert using fuzzy logic control. The system was modeled by an adaptive neuro-fuzzy inference system (ANFIS). The data were then entered into the system and new membership functions were determined. By this way, learning ability of the artificial neural network and the abilities of fuzzy logic, such as decision making, were combined and a more effective solution was developed. The system software can be reprogrammed with the new membership functions.
引用
收藏
页码:636 / 655
页数:20
相关论文
共 50 条
  • [21] Adaptive Neuro-Fuzzy Inference System in Fuzzy Measurement to Track Association
    Tafti, Abdolreza Dehghani
    Sadati, Nasser
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 1 - 8
  • [22] Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System
    Milovancevic, Milos
    Dimov, Aleksandar
    Spasov, Kamen Boyanov
    Vracar, Ljubomir
    Planic, Miroslav
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2021, 37 (04): : 439 - 452
  • [23] Traffic Signal Control Based on Adaptive Neuro-Fuzzy Inference
    Wannige, C. T.
    Sonnadara, D. U. J.
    2008 4TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2008, : 327 - +
  • [24] An optimization of a planning information system using fuzzy inference system and adaptive neuro-Fuzzy inference system
    1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (10):
  • [25] Noise cancellation by using Adaptive Neuro-Fuzzy Inference System
    Zhang, Bao-cheng
    Xu, Xie-xian
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2000, 4 (04): : 62 - 67
  • [27] A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm
    Varnamkhasti, M. Jalali
    Hassan, Nasruddin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 25 (03) : 793 - 796
  • [28] Adaptive Neuro-fuzzy Inference system into Induction Motor : Estimation
    Boussada, Zina
    Ben Hamed, Mouna
    Sbita, Lassaad
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2014,
  • [29] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523
  • [30] Adaptive Neuro-Fuzzy Inference System for Binaural Source Localisation
    Scerri, Jeremy
    Scicluna, Kris
    Seguna, Clive
    Zammit, Joseph A.
    2018 INTERNATIONAL CONFERENCE ON RECENT INNOVATIONS IN ELECTRICAL, ELECTRONICS & COMMUNICATION ENGINEERING (ICRIEECE 2018), 2018, : 2441 - 2443