Nonlinear pattern hypothesis generation for data mining

被引:2
|
作者
Wang, SH [1 ]
机构
[1] Univ Massachusetts Dartmouth, Charlton Coll Business, Dept Mkt Business Informat Syst, N Dartmouth, MA 02747 USA
关键词
data mining; nonlinear pattern hypothesis; hypothesis generation; knowledge discovery; neural network models;
D O I
10.1016/S0169-023X(01)00059-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reports on conceptual development in applications of neural networks to data mining and knowledge discovery. Hypothesis generation is one of the significant differences of data mining from statistical analyses. Nonlinear pattern hypothesis generation is a major task of data mining and knowledge discovery. Yet, few methods of nonlinear pattern hypothesis generation are available. This paper proposes a model of data mining to support nonlinear pattern hypothesis generation. This model is an integration of linear regression analysis model, Kohonen's self-organizing maps, the algorithm for convex polytopes. and back-propagation neural networks. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [31] Data Mining for Terahertz Generation Crystals
    Ho, Sin-Hang
    Valdivia-Berroeta, Gabriel A.
    Zaccardi, Zachary B.
    Pettit, Sydney K. F.
    Palmer, Bruce Wayne
    Lutz, Matthew J.
    Rader, Claire
    Hunter, Brittan P.
    Green, Natalie K.
    Barlow, Connor
    Wayment, Coriantumr Z.
    Harmon, Daisy J.
    Petersen, Paige
    Smith, Stacey J.
    Michaelis, David J.
    Johnson, Jeremy A.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [32] Data Mining for Terahertz Generation Crystals
    Valdivia-Berroeta, Gabriel A.
    Zaccardi, Zachary B.
    Pettit, Sydney K. F.
    Ho, Sin-Hang
    Palmer, Bruce Wayne
    Lutz, Matthew J.
    Rader, Claire
    Hunter, Brittan P.
    Green, Natalie K.
    Barlow, Connor
    Wayment, Coriantumr Z.
    Ludlow, Daisy J.
    Petersen, Paige
    Smith, Stacey J.
    Michaelis, David J.
    Johnson, Jeremy A.
    ADVANCED MATERIALS, 2022, 34 (16)
  • [33] Discriminative Pattern Mining for Natural Language Metaphor Generation
    Brooks, Jennifer
    Youssef, Abdou
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4276 - 4283
  • [34] Oncology In Vivo Data Integration for Hypothesis Generation
    Wei, Jia
    Chen, Ming
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2012, 9 (02):
  • [35] Frequent Pattern Mining for Kernel Trace Data
    LaRosa, Christopher
    Xiong, Li
    Mandelberg, Ken
    APPLIED COMPUTING 2008, VOLS 1-3, 2008, : 880 - 885
  • [36] Data Mining for Floral Distribution Pattern Detection
    Pivetti, S.
    Giacomini, M.
    Casazza, G.
    Minuto, L.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 5, 2009, 25 : 230 - +
  • [37] CLOSED SEQUENTIAL PATTERN MINING IN BIOLOGICAL DATA
    Jawahar, S.
    Harishchander, A.
    Devaraju, S.
    Ali, S. Ahamed Johnsha
    Manivasagan, C.
    Sumathi, P.
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2020, : 9 - 13
  • [38] Efficient Pattern Mining of Uncertain Data with Sampling
    Calders, Toon
    Garboni, Calin
    Goethals, Bart
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PROCEEDINGS, 2010, 6118 : 480 - +
  • [39] Data preprocessing by sequential pattern mining for LZW
    Vergara-Villegas, OO
    García-Hernández, RA
    Carrasco-Ochoa, JA
    Elías, RP
    Martínez-Trinidad, JF
    Sixth Mexican International Conference on Computer Science, Proceedings, 2005, : 82 - 87
  • [40] Pattern mining from saccadic motion data
    Liang, Peter
    Yang, Yingzhen
    Cai, Yang
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 2523 - 2532