The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu

被引:152
|
作者
Kidambi, Piran R. [1 ]
Ducati, Caterina [2 ]
Dlubak, Bruno [1 ]
Gardiner, Damian [1 ]
Weatherup, Robert S. [1 ]
Martin, Marie-Blandine [3 ,4 ]
Seneor, Pierre [3 ,4 ]
Coles, Harry [1 ]
Hofmann, Stephan [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
[3] Unite Mixte Phys CNRS Thales, F-91767 Palaiseau, France
[4] Univ Paris 11, F-91405 Orsay, France
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 42期
基金
英国工程与自然科学研究理事会;
关键词
RAMAN-SPECTROSCOPY; GROWTH; COPPER; CARBON; FILMS; SOLUBILITY;
D O I
10.1021/jp303597m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A systematic study of the parameter space of graphene chemical vapor deposition (CVD) on polycrystalline Cu foils is presented, aiming at a more fundamental process rationale in particular regarding the choice of carbon precursor and mitigation of Cu sublimation. CH4 as precursor requires H-2 dilution and temperatures >= 1000 degrees C to keep the Cu surface reduced and yield a high quality, complete monolayer graphene coverage. The H-2 atmosphere etches as grown graphene; hence, maintaining a balanced CH4/H-2 ratio is critical. Such balance is more easily achieved at low-pressure conditions, at which however Cu sublimation reaches deleterious levels. In contrast, C6H6 as precursor requires no reactive diluent and consistently gives similar graphene quality at 100-150 degrees C lower temperatures. The lower process temperature and more robust processing conditions allow the problem of Cu sublimation to be effectively addressed. Graphene formation is not inherently self limited to a monolayer for any of the precursors. Rather, the higher the supplied carbon chemical potential, the higher the likelihood of film inhomogeneity and primary and secondary multilayer graphene nucleation. For the latter, domain boundaries of the inherently polycrystalline CVD graphene offer pathways for a continued carbon supply to the catalyst. Graphene formation is significantly affected by the Cu crystallography; i.e., the evolution of microstructure and texture of the catalyst template form an integral part of the CVD process.
引用
收藏
页码:22492 / 22501
页数:10
相关论文
共 50 条
  • [21] In situ control of dewetting of Cu thin films in graphene chemical vapor deposition
    Croin, L.
    Vittone, E.
    Amato, G.
    THIN SOLID FILMS, 2014, 573 : 122 - 127
  • [22] The Submillimeter-Sized Dendritic Graphene Synthesized on Cu by Chemical Vapor Deposition
    Liu, Jinyang
    Zuo, Chuandong
    Lin, Limei
    Xu, Yangyang
    Zheng, Weifeng
    Qu, Yan
    Lai, Fachun
    Huang, Zhigao
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (07) : 7617 - 7621
  • [23] Understanding the Reaction Kinetics to Optimize Graphene Growth on Cu by Chemical Vapor Deposition
    Kraus, Juergen
    Boebel, Lena
    Zwaschka, Gregor
    Guenther, Sebastian
    ANNALEN DER PHYSIK, 2017, 529 (11)
  • [24] Influence of Chemisorbed Oxygen on the Growth of Graphene on Cu(100) by Chemical Vapor Deposition
    Robinson, Zachary R.
    Ong, Eng Wen
    Mowll, Tyler R.
    Tyagi, Pam
    Gaskill, D. Kurt
    Geisler, Heike
    Ventrice, Carl A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (45): : 23919 - 23927
  • [25] Chemical Vapor Deposition Growth of Graphene Domains Across the Cu Grain Boundaries
    Wang, Yang
    Cheng, Yu
    Wang, Yunlu
    Zhang, Shuai
    Xu, Chen
    Zhang, Xuewei
    Wang, Miao
    Xia, Yang
    Li, Qunyang
    Zhao, Pei
    Wang, Hongtao
    NANO, 2018, 13 (08)
  • [26] A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition
    Wang, Shumin
    Qiao, Liang
    Zhao, Cuimei
    Zhang, Xiaoming
    Chen, Jianli
    Tian, Hongwei
    Zheng, Weitao
    Han, Zhengbo
    NEW JOURNAL OF CHEMISTRY, 2013, 37 (05) : 1616 - 1622
  • [27] Anomalous dissipation mechanism and Hall quantization limit in polycrystalline graphene grown by chemical vapor deposition
    Lafont, F.
    Ribeiro-Palau, R.
    Han, Z.
    Cresti, A.
    Delvallee, A.
    Cummings, A. W.
    Roche, S.
    Bouchiat, V.
    Ducourtieux, S.
    Schopfer, F.
    Poirier, W.
    PHYSICAL REVIEW B, 2014, 90 (11)
  • [28] The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition
    Paul, Rajat K.
    Badhulika, Sushmee
    Niyogi, Sandip
    Haddon, Robert C.
    Boddu, Veera M.
    Costales-Nieves, Carmen
    Bozhilov, Krassimir N.
    Mulchandani, Ashok
    CARBON, 2011, 49 (12) : 3789 - 3795
  • [29] Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition
    Mueller, Niclas S.
    Morfa, Anthony J.
    Abou-Ras, Daniel
    Oddone, Valerio
    Ciuk, Tymoteusz
    Giersig, Michael
    CARBON, 2014, 78 : 347 - 355
  • [30] In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes
    Lee, Woomin
    Kihm, Kenneth David
    Kim, Hong Goo
    Shin, Seungha
    Lee, Changhyuk
    Park, Jae Sung
    Cheon, Sosan
    Kwon, Oh Myoung
    Lim, Gyumin
    Lee, Woorim
    NANO LETTERS, 2017, 17 (04) : 2361 - 2366