Deep Forest-Based Monocular Visual Sign Language Recognition

被引:7
|
作者
Xue, Qifan [1 ]
Li, Xuanpeng [1 ]
Wang, Dong [1 ]
Zhang, Weigong [1 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 09期
关键词
sign language recognition; monocular vision; deep forest; NEURAL-NETWORKS;
D O I
10.3390/app9091945
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sign language recognition (SLR) is a bridge linking the hearing impaired and the general public. Some SLR methods using wearable data gloves are not portable enough to provide daily sign language translation service, while visual SLR is more flexible to work with in most scenes. This paper introduces a monocular vision-based approach to SLR. Human skeleton action recognition is proposed to express semantic information, including the representation of signs' gestures, using the regularization of body joint features and a deep-forest-based semantic classifier with a voting strategy. We test our approach on the public American Sign Language Lexicon Video Dataset (ASLLVD) and a private testing set. It proves to achieve a promising performance and shows a high generalization capability on the testing set.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Deep Convolutional Neural Networks for Sign Language Recognition
    Rao, G. Anantha
    Syamala, K.
    Kishore, P. V. V.
    Sastry, A. S. C. S.
    2018 CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION ENGINEERING SYSTEMS (SPACES), 2018, : 194 - 197
  • [42] Isolated Sign Language Recognition Using Deep Learning
    Das, Sukanya
    Yadav, Sumit Kumar
    Samanta, Debasis
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT I, 2024, 2009 : 343 - 356
  • [43] Deep forest-based hypertension and OSAHS patient screening model
    Wang P.-P.
    Ma L.
    Lv Y.-H.
    Xiang Y.
    Shao D.-G.
    Xiong X.
    International Journal of Information and Communication Technology, 2020, 16 (02) : 112 - 122
  • [44] Deep Forest-Based Fault Diagnosis Method for Chemical Process
    Ding, Jiaman
    Luo, Qingbo
    Jia, Lianyin
    You, Jinguo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [45] Gestural teleoperation of a mobile robot based on visual recognition of sign language static handshapes
    Tzafestas, C.
    Mitsou, N.
    Georgakarakos, N.
    Diamanti, O.
    Maragos, P.
    Fotinea, S. -E.
    Efthimiou, E.
    RO-MAN 2009: THE 18TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, VOLS 1 AND 2, 2009, : 700 - +
  • [46] Forest-Based Networks
    K. T. Huber
    V. Moulton
    G. E. Scholz
    Bulletin of Mathematical Biology, 2022, 84
  • [47] Interactive and Markerless Visual Recognition of Brazilian Sign Language Alphabet
    Furtado, Silas Luiz
    de Oliveira, Jauvane C.
    Shirmohammadi, Shervin
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [48] Robust person-independent visual sign language recognition
    Zieren, J
    Kraiss, KN
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS, 2005, 3522 : 520 - 528
  • [49] Forest-Based Networks
    Huber, K. T.
    Moulton, V
    Scholz, G. E.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (10)
  • [50] Deep Leaning Based Static Indian-Gujarati Sign Language Gesture Recognition
    Patel D.U.
    Joshi J.M.
    SN Computer Science, 3 (5)