An Intelligent RFID Data Predicting Method Based on BP-Adaboost

被引:0
|
作者
Cheng, Hong [1 ]
Tan, Jie [1 ]
Liu, Yu [1 ]
Ni, WanCheng [1 ]
机构
[1] Chinese Acad Sci, RFID Res Ctr, Inst Automat, Beijing, Peoples R China
关键词
Radio Frequency Identification; intelligent RFID data predicting method; BP-Adaboost; TRACKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Combinatorial Radio Frequency Identification (RFID) benchmarking test methodology is proposed to instruct users to deploy RFID real-life systems by giving reliable benchmark data. However, it is very inefficient, since collecting RFID data is usually very time-consuming. With the rapid increase of RFID components, combinatorial RFID benchmarking tests get more and more expensive. To address this problem, an intelligent RFID data predicting method is proposed. The predicting model for each reader antenna in the RFID system is learnt from a small set of real RFID data by the BP-Adaboost algorithm. The model then is used to produce highly accurate RFID reading results at different antenna deployments. The RFID system performance can be estimated from these reading results, which can be used to help users choose the suitable RFID system for certain application. Conducted experiments showed that such predicting model produced RFID data with an accuracy over 92%, and can be used to quickly find out improper RFID components and systems for different applications in a very short time.
引用
收藏
页码:628 / 632
页数:5
相关论文
共 50 条
  • [41] 基于BP-Adaboost与TOPSIS的航空装备供应商评价
    顾玉磊
    马晖
    王愚勤
    胡卉
    刘富鑫
    山东大学学报(工学版), 2024, 54 (01) : 63 - 73
  • [42] Predicting the Rise and Fall of Stock Prices based on the modified BP_AdaBoost
    Li, Lu
    Xu, Shizhan
    Liu, Yanhong
    Yang, Xiaorong
    2020 4TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2020), 2020, 1518
  • [43] BP-AdaBoost模型在光纤陀螺零偏温度补偿中的应用
    刘元元
    杨功流
    李思宜
    北京航空航天大学学报, 2014, 40 (02) : 235 - 239
  • [44] 并行BP神经网络和BP-Adaboost集成学习管道故障识别方法分析
    杨磊
    华东科技, 2023, (12) : 106 - 108
  • [45] 基于BP-Adaboost算法的棉花采摘机预维修方法研究
    马娜
    段慧芳
    山西农业大学学报(自然科学版), 2018, (01) : 73 - 76
  • [46] 基于AHP和BP-Adaboost的低压电力用户价值评价方法
    朱吉然
    张帝
    张志丹
    彭涛
    游金梁
    唐小伟
    马瑞
    电力科学与技术学报, 2022, 37 (05) : 155 - 163
  • [47] 基于BP-Adaboost算法的数控机床材料切削能耗预测研究
    陈世平
    谢俊
    罗小
    陈伟
    制造技术与机床, 2020, (12) : 20 - 24
  • [48] Short-term photovoltaic power prediction with similar-day integrated by BP-AdaBoost based on the Grey-Markov model
    Yang, Xiyun
    Wang, Shichen
    Peng, Yan
    Chen, Jingwei
    Meng, Lingzhuochao
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 215
  • [49] 基于改进BP-Adaboost和HMM混合模型的方言情感识别
    冀常鹏
    程琳
    李锋
    成都信息工程大学学报, 2019, 34 (05) : 495 - 500
  • [50] Twin-array capacitance sensor for multi-parameter measurement of gas-solid particle flow based on BP-Adaboost
    Yan, Weijian
    Yang, Daoye
    Zhang, Yurong
    Li, Bo
    FLOW MEASUREMENT AND INSTRUMENTATION, 2023, 94