Quasiperiodic solutions of the Korteweg-de Vries equation

被引:2
|
作者
Zaiko, YN [1 ]
机构
[1] Volga Reg Acad State Serv, Saratov, Russia
关键词
Phase Transition; Wave Propagation; Periodic Solution; Structure System; Harmonic Generation;
D O I
10.1134/1.1467286
中图分类号
O59 [应用物理学];
学科分类号
摘要
Physical premises for the appearance of quasiperiodic solutions of the Korteweg-de Vries (KdV) equation are considered. Such solutions appear near singularities of the KdV equation describing, for example, polarization waves in a ferroelectric substance featuring the first-order phase transition or in an electron beam-waveguide structure system. The presence of a singularity results in that the velocity of longwave perturbations in the system becomes imaginary, which corresponds to the wave propagation in the range of nontransparency. The second harmonic generation is related to modulation of the initial periodic solution at the second (lower) frequency. (C) 2002 MAIK "Nauka/Interperiodica".
引用
收藏
页码:235 / 236
页数:2
相关论文
共 50 条
  • [41] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [42] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [43] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [44] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [45] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [46] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    PHYSICAL REVIEW D, 2012, 86 (12)
  • [47] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [48] On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation
    Mendez, Argenis J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9051 - 9089
  • [49] Lump and Interaction solutions of a geophysical Korteweg-de Vries equation
    Rizvi, S. T. R.
    Seadawy, Aly R.
    Ashraf, F.
    Younis, M.
    Iqbal, H.
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2020, 19
  • [50] Integrability and solutions of a nonsymmetric discrete Korteweg-de Vries equation
    Maebel Mesfun
    Da-jun Zhang
    Song-lin Zhao
    Communications in Theoretical Physics, 2024, 76 (02) : 47 - 52