Li0.5(1-x )ZnxFe2.5-0.5x O-4 ferrites (x = 0.2; 0.4) were produced by thermal and radiation-thermal (RT) synthesis from Li2CO3-Fe2O3-ZnO powder mixtures and then studied using x-ray diffraction (XRD) and saturation magnetization analysis. The RT synthesis was carried out by 2.4 MeV electron beam heating of samples from the first batch at the temperatures of 600A degrees C, 700A degrees C, 750A degrees C and isothermal exposure time of 0 min, 10 min, 20 min, 30 min, 60 min, and 120 min. For comparative analysis, thermal heating of samples from the second batch was performed in a resistance laboratory furnace using the same time and temperature regimes. XRD analysis of samples showed the formation of lithium-zinc ferrites with greater homogeneous phase composition at lower values of temperature and time during RT synthesis compared to the samples obtained by thermal heating. Also, RT-synthesized ferrites are characterized by significantly higher values of saturation magnetization at all time and temperature regimes. It was established that a regime of RT synthesis at 750A degrees C-30 min provides the formation of lithium-zinc ferrites with a high degree of final phase composition.