Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs

被引:1
|
作者
Mehana, Mohamed [1 ]
Chen, Fangxuan [2 ]
Fahes, Mashhad [3 ]
Kang, Qinjun [1 ]
Viswanathan, Hari [1 ]
机构
[1] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA
[2] Texas A&M Univ, Dept Petr Engn, College Stn, TX 78412 USA
[3] Univ Oklahoma, Dept Petr Engn, Norman, OK 73019 USA
关键词
geochemical modeling; shale reservoirs; hydraulic fracture; GAS; HETEROGENEITY; MINERALOGY; IMPACT; PRECIPITATION; IMBIBITION; RECOVERY;
D O I
10.3390/en15228557
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Field operations report that at least half of the fracturing fluid used in shale reservoirs is trapped. These trapped fluids can trigger various geochemical interactions. However, the impact of these interactions on well performance is still elusive. We modeled a hydraulic fracture stage where we simulated the initial conditions by injecting the fracturing fluid and shutting the well to allow the fluids to soak into the formation. Our results suggest a positive correlation between the dissolution and precipitation rates and the carbonate content of the rock. In addition, we observed that gas and load recovery are overestimated when geochemical interactions are overlooked. We also observed promising results for sea water as a good alternative fracturing fluid. Moreover, we observed better performance for cases with lower-saline connate water. The reactions of carbonates outweigh the reactions of clays in most cases. Sensitivity analysis suggests that the concentration of SO4, K and Na ions in the fracturing fluid, and the illite and calcite mineral content, along with the reservoir temperature, are the key factors affecting well performance. In conclusion, geochemical interactions should be considered for properly modeling the fate of the fracturing fluids and their impact on well performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Study on the Fracture Extension Law of Hydraulic Fracturing in Shale Reservoirs
    Liu, Ting
    Dong, Ye Shengfu
    Zhang, Zheng
    He, Minghui
    Zhao, Jinlin
    Zhang, Fashi
    Li, Jingrui
    Jiang, Tao
    CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS, 2024, 60 (05) : 1278 - 1288
  • [32] OPTIMIZATION OF FRACTURING FLUID SYSTEM AND FRACTURING TECHNOLOGY IN TIGHT SANDSTONE RESERVOIRS
    Wang, Minghao
    Sung, Ming
    Cao, Chao
    Xue, Haifei
    Zhang, Qi
    Yang, Leibo
    Wang, Wei
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (7A): : 9237 - 9243
  • [33] Experimental Characterization and Pore-Scale Modeling of Iron Precipitation in Shale Reservoirs by Interacting with Hydraulic Fracturing Fluid
    You, Jiahui
    Lee, Kyung Jae
    ENERGY & FUELS, 2022, 36 (21) : 12997 - 13006
  • [34] Gas Fracturing Simulation of Shale-Gas Reservoirs Considering Damage Effects and Fluid-Solid Coupling
    Qi, Enze
    Xiong, Fei
    Zhang, Yun
    Wang, Linchao
    Xue, Yi
    Fu, Yingpeng
    WATER, 2024, 16 (09)
  • [35] Fluid transport in shale gas reservoirs: Simultaneous effects of stress and slippage on matrix permeability
    Moghaddam, Rasoul Nazari
    Jamiolahmady, Mahmoud
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2016, 163 : 87 - 99
  • [36] Fracturing-Fluid Flowback Simulation with Consideration of Proppant Transport in Hydraulically Fractured Shale Wells
    Wang, Fei
    Chen, Qiaoyun
    Lyu, Xinrun
    Zhang, Shicheng
    ACS OMEGA, 2020, 5 (16): : 9491 - 9502
  • [37] Comprehensive study of hydraulic fracturing in shale oil reservoirs comprising shale-sandstone transitions
    Suo, Yu
    Li, Zi-Hao
    Fu, Xiao-Fei
    Zhang, Cheng-Chen
    Jia, Zhen-Jia
    Peng, Dong-Zhe
    He, Wen-Yuan
    Pan, Zhe-Jun
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [38] Shale gas fracturing using foam-based fracturing fluid: a review
    Wanniarachchi, W. A. M.
    Ranjith, P. G.
    Perera, M. S. A.
    ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (02)
  • [39] Shale gas fracturing using foam-based fracturing fluid: a review
    W. A. M. Wanniarachchi
    P. G. Ranjith
    M. S. A. Perera
    Environmental Earth Sciences, 2017, 76
  • [40] Shale geomechanics: Optimal multi-stage hydraulic fracturing design for shale and tight reservoirs
    Leem, J.
    Reyna, J.
    ROCK ENGINEERING AND ROCK MECHANICS: STRUCTURES IN AND ON ROCK MASSES, 2014, : 1403 - 1408