On the measurability of functions with quasi-continuous and upper semi-continuous vertical sections

被引:1
|
作者
Grande, Zbigniew [1 ]
机构
[1] Kazimierz Wielki Univ, Inst Math, PL-85072 Bydgoszcz, Poland
关键词
Lebesgue measurability; Baire property; Baire classes; upper semi-continuity; quasi-continuity; sup-measurability;
D O I
10.2478/s12175-013-0135-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f: a"e(2) -> a"e be a function with upper semicontinuous and quasi-continuous vertical sections f (x) (t) = f(x, t), t, x a a"e. It is proved that if the horizontal sections f (y) (t) = f(t, y), y, t a a"e, are of Baire class alpha (resp. Lebesgue measurable) [resp. with the Baire property] then f is of Baire class alpha + 2 (resp. Lebesgue measurable and sup-measurable) [resp. has Baire property].
引用
收藏
页码:793 / 798
页数:6
相关论文
共 50 条
  • [21] NOTE ON SEMI-CONTINUOUS FUNCTIONS
    JENSEN, JA
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1967, 43 (3-4): : 158 - &
  • [22] Totally semi-continuous functions
    Nour, T. M.
    Indian Journal of Pure and Applied Mathematics, 1995, 26 (07):
  • [23] ON CHARACTERIZATIONS OF SEMI-CONTINUOUS FUNCTIONS
    BISWAS, N
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1970, 48 (04): : 399 - &
  • [24] INVERSE LIMITS WITH UPPER SEMI-CONTINUOUS BONDING FUNCTIONS AND INDECOMPOSABILITY
    Varagona, Scott
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (03): : 1017 - 1034
  • [25] INVERSE LIMITS OF UPPER SEMI-CONTINUOUS FUNCTIONS THAT ARE UNIONS OF MAPPINGS
    Ingram, W. T.
    TOPOLOGY PROCEEDINGS, VOL 34, 2009, 34 : 17 - 26
  • [26] Inverse limits of upper semi-continuous set valued functions
    Ingram, WT
    Mahavier, WS
    HOUSTON JOURNAL OF MATHEMATICS, 2006, 32 (01): : 119 - 130
  • [27] The cantor set and inverse limits of upper semi-continuous functions
    Capulin, Felix
    del Portal, Francisco R. Ruiz
    Sanchez-Garrido, Monica
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [28] Infinite products of quasi-continuous functions
    Chmielewska, Katarzyna
    Maliszewski, Aleksander
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 3101 - 3108
  • [29] QUASI-CONTINUOUS FUNCTIONS ON PRODUCT SPACES
    MARTIN, NF
    DUKE MATHEMATICAL JOURNAL, 1961, 28 (01) : 39 - +
  • [30] COMPACTNESS IN SPACE OF QUASI-CONTINUOUS FUNCTIONS
    HILDEBRANDT, TH
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2): : 144 - +