Numerical and analytical solutions of dispersion equation in lossy nonlinear waveguiding system

被引:0
|
作者
Shabat, MM [1 ]
Jäger, D
Abd-El naby, MA
Barakat, NM
机构
[1] Gerhard Mercator Univ, Fac Elect Engn & Elect, ZHO, Ctr Semicond & Optoelect, D-47057 Duisburg, Germany
[2] Ain Shams Univ, Fac Educ, Dept Math, Cairo, Egypt
[3] Coll Educ, Dept Math, Gaza, Israel
[4] Islam Univ Gaza, Dept Phys, Gaza, Palestinian, Israel
关键词
nonlinear TE waves; lossy waveguides; numerical and perturbation techniques;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a numerical (Davidenko's approach) technique and nn analytical (a perturbation approach) method for finding the complex roots of the dispersion equation in a lossy nonlinear waveguide. Both methods are used to compute the dispersion equation Sor TE waves guided by a dielectric film bounded on each side with complex nonlinear dielectric media. Davidenko's technique has been found to be a good alternative approach to old techniques such as the Muller and Newton methods ns these techniques Sail to glue accurate complex roots of many complex waveguides. The perturbation method gives similar results to Davidenko's result. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:273 / 278
页数:6
相关论文
共 50 条
  • [31] Numerical Validation of Analytical Solutions for the Kairat Evolution Equation
    Khater, Mostafa M. A.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (10)
  • [32] Singular solutions of the BBM equation: analytical and numerical study
    Gavrilyuk, Sergey
    Shyue, Keh-Ming
    NONLINEARITY, 2022, 35 (01) : 388 - 410
  • [33] Analytical and numerical solutions of the Van Der Pol Equation
    J. Stefan Inst, Ljubljana, Slovenia
    Elektroteh Vestn Electrotech Rev, 4-5 (225-233):
  • [34] Analytical and numerical solutions of the Schrodinger-KdV equation
    Labidi, Manel
    Ebadi, Ghodrat
    Zerrad, Essaid
    Biswas, Anjan
    PRAMANA-JOURNAL OF PHYSICS, 2012, 78 (01): : 59 - 90
  • [35] On the analytical and numerical solutions of the Benjamin–Bona–Mahony equation
    Asif Yokus
    Tukur Abdulkadir Sulaiman
    Hasan Bulut
    Optical and Quantum Electronics, 2018, 50
  • [36] New analytical solutions to the nonlinear Schrodinger equation model
    Zhang, YY
    Zheng, Y
    Zhang, HQ
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (11-12): : 775 - 782
  • [37] Analytical solutions to a nonlinear diffusion-advection equation
    Pudasaini, Shiva P.
    Hajra, Sayonita Ghosh
    Kandel, Santosh
    Khattri, Khim B.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06):
  • [38] Analytical and numerical solutions of the Schrödinger–KdV equation
    MANEL LABIDI
    GHODRAT EBADI
    ESSAID ZERRAD
    ANJAN BISWAS
    Pramana, 2012, 78 : 59 - 90
  • [39] Analytical Solutions for a Nonlinear Reaction-diffusion Equation
    Curilef, Sergio
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1771 - 1774
  • [40] Analytical solutions for a nonlinear diffusion equation with convection and reaction
    Valenzuela, C.
    del Pino, L. A.
    Curilef, S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 416 : 439 - 451