A Mechanistic Understanding of Allosteric Immune Escape Pathways in the HIV-1 Envelope Glycoprotein

被引:48
|
作者
Sethi, Anurag [1 ,2 ]
Tian, Jianhui [1 ]
Derdeyn, Cynthia A. [3 ,4 ,5 ]
Korber, Bette [1 ,6 ]
Gnanakaran, S. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Emory Univ, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
[4] Emory Univ, Yerkes Natl Primate Res Ctr, Atlanta, GA 30322 USA
[5] Emory Univ, Emory Vaccine Ctr, Atlanta, GA 30322 USA
[6] Duke Univ, Sch Med, Ctr HIV AIDS Vaccine Immunol, Durham, NC USA
来源
PLOS COMPUTATIONAL BIOLOGY | 2013年 / 9卷 / 05期
关键词
IMMUNODEFICIENCY-VIRUS TYPE-1; HUMAN MONOCLONAL-ANTIBODY; TRANSFER-RNA SYNTHETASE; NORMAL-MODE ANALYSIS; MOLECULAR-DYNAMICS; STRUCTURAL BASIS; NEUTRALIZATION EPITOPE; CONFORMATIONAL MASKING; WATER MODELS; GP120; CORE;
D O I
10.1371/journal.pcbi.1003046
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The HIV-1 envelope (Env) spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD) simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A VRC13-like bNAb response is associated with complex escape pathways in HIV-1 envelope
    Joshi, Vinita R.
    Claiborne, Daniel T.
    Pack, Melissa L.
    Power, Karen A.
    Newman, Ruchi M.
    Batorsky, Rebecca
    Bean, David J.
    Goroff, Matthew S.
    Lingwood, Daniel
    Seaman, Michael S.
    Rosenberg, Eric
    Allen, Todd M.
    JOURNAL OF VIROLOGY, 2024, 98 (03)
  • [32] A Conformational Escape Reaction of HIV-1 against an Allosteric Integrase Inhibitor
    Nakamura, Tomofumi
    Nakamura, Teruya
    Amano, Masayuki
    Miyakawa, Toshikazu
    Yamagata, Yuriko
    Matsuoka, Masao
    Nakata, Hirotomo
    JOURNAL OF VIROLOGY, 2020, 94 (19)
  • [33] Glycosylation in HIV-1 envelope glycoprotein and its biological implications
    Ho, Yung Shwen
    Saksena, Nitin K.
    FUTURE VIROLOGY, 2013, 8 (08) : 783 - 800
  • [34] Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein
    Piai, Alessandro
    Fu, Qingshan
    Cai, Yongfei
    Ghantous, Fadi
    Xiao, Tianshu
    Shaik, Md Munan
    Peng, Hanqin
    Rits-Volloch, Sophia
    Chen, Wen
    Seaman, Michael S.
    Chen, Bing
    Chou, James J.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [35] Conformation of the HIV-1 gp120 envelope glycoprotein
    Sodroski, J
    Wyatt, R
    Olshevsky, U
    Olshevsky, V
    Moore, J
    DEVELOPMENT AND APPLICATIONS OF VACCINES AND GENE THERAPY IN AIDS, 1996, 48 : 184 - 187
  • [36] Structural Mechanism of Trimeric HIV-1 Envelope Glycoprotein Activation
    Tran, Erin E. H.
    Borgnia, Mario J.
    Kuybeda, Oleg
    Schauder, David M.
    Bartesaghi, Alberto
    Frank, Gabriel A.
    Sapiro, Guillermo
    Milne, Jacqueline L. S.
    Subramaniam, Sriram
    PLOS PATHOGENS, 2012, 8 (07) : 37
  • [37] Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer
    Mao, Youdong
    Wang, Liping
    Gu, Christopher
    Herschhorn, Alon
    Desormeaux, Anik
    Finzi, Andres
    Xiang, Shi-Hua
    Sodroski, Joseph G.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (30) : 12438 - 12443
  • [38] THE INTERACTION OF A GLYCOSAMINOGLYCAN, HEPARIN, WITH HIV-1 MAJOR ENVELOPE GLYCOPROTEIN
    MBEMBA, E
    CZYRSKI, JA
    GATTEGNO, L
    BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1180 (02) : 123 - 129
  • [39] MUTATIONAL ANALYSIS OF THE ASSEMBLY DOMAIN OF THE HIV-1 ENVELOPE GLYCOPROTEIN
    EARL, PL
    MOSS, B
    AIDS RESEARCH AND HUMAN RETROVIRUSES, 1993, 9 (07) : 589 - 594
  • [40] Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer
    Mao, Youdong
    Castillo-Menendez, Luis
    Wang, Liping
    Gu, Christopher
    Herschhorn, Alon
    Desormeaux, Anik
    Finzi, Andres
    Xiang, Shi-Hua
    Sodroski, Joseph G.
    RETROVIROLOGY, 2013, 10 : S1 - S1