Learning Modular Structures That Generalize Out-of-Distribution

被引:0
|
作者
Ashok, Arjun [1 ]
Devaguptapu, Chaitanya [1 ]
Balasubramanian, Vineeth N. [1 ]
机构
[1] Indian Inst Technol Hyderabad, IITH Main Rd,Near NH-65, Kandi 502285, Telangana, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Out-of-distribution (O.O.D.) generalization remains to be a key challenge for real-world machine learning systems. We describe a method for O.O.D. generalization that, through training, encourages models to only preserve features in the network that are well reused across multiple training domains. Our method combines two complementary neuronlevel regularizers with a probabilistic differentiable binary mask over the network, to extract a modular sub-network that achieves better O.O.D. performance than the original network. Preliminary evaluation on two benchmark datasets corroborates the promise of our method.
引用
收藏
页码:12905 / 12906
页数:2
相关论文
共 50 条
  • [41] Certifiable Out-of-Distribution Generalization
    Ye, Nanyang
    Zhu, Lin
    Wang, Jia
    Zeng, Zhaoyu
    Shao, Jiayao
    Peng, Chensheng
    Pan, Bikang
    Li, Kaican
    Zhu, Jun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10927 - 10935
  • [42] Entropic Out-of-Distribution Detection
    Macedo, David
    Ren, Tsang Ing
    Zanchettin, Cleber
    Oliveira, Adriano L., I
    Ludermir, Teresa
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [43] The Value of Out-of-Distribution Data
    De Silva, Ashwin
    Ramesh, Rahul
    Priebe, Carey E.
    Chaudhari, Pratik
    Vogelstein, Joshua T.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [44] Watermarking for Out-of-distribution Detection
    Wang, Qizhou
    Liu, Feng
    Zhang, Yonggang
    Zhang, Jing
    Gong, Chen
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [45] Is Out-of-Distribution Detection Learnable?
    Fang, Zhen
    Li, Yixuan
    Lu, Jie
    Dong, Jiahua
    Han, Bo
    Liu, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [46] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [47] Learning Not to Generalize: Modular Adaptation of Visuomotor Gain
    Pearson, Toni S.
    Krakauer, John W.
    Mazzoni, Pietro
    JOURNAL OF NEUROPHYSIOLOGY, 2010, 103 (06) : 2938 - 2952
  • [48] Continually Learning Out-of-Distribution Spatiotemporal Data for Robust Energy Forecasting
    Prabowo, Arian
    Chen, Kaixuan
    Xue, Hao
    Sethuvenkatraman, Subbu
    Salim, Flora D.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 3 - 19
  • [49] Dense Out-of-Distribution Detection by Robust Learning on Synthetic Negative Data
    Grcic, Matej
    Bevandic, Petra
    Kalafatic, Zoran
    Segvic, Sinisa
    SENSORS, 2024, 24 (04)
  • [50] Look Into Gradients: Learning Compact Hash Codes for Out-of-Distribution Retrieval
    Wang, Haixin
    Yang, Xinlong
    Sun, Jinan
    Zhang, Shikun
    Chen, Chong
    Hua, Xian-Sheng
    Luo, Xiao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8730 - 8743