CRISP3 expression drives prostate cancer invasion and progression

被引:20
|
作者
Volpert, Marianna [1 ]
Furic, Luc [1 ,2 ,3 ,4 ]
Hu, Jinghua [1 ,5 ]
O'Connor, Anne E. [1 ,5 ]
Rebello, Richard J. [1 ]
Keerthikumar, Shivakumar [2 ,3 ,6 ]
Evans, Jemma [7 ,8 ]
Merriner, D. Jo [1 ,5 ]
Pedersen, John [1 ]
Risbridger, Gail P. [1 ,2 ,3 ,4 ]
McIntyre, Peter [9 ,10 ]
O'Bryan, Moira K. [1 ,5 ]
机构
[1] Monash Univ, Dept Anat & Dev Biol, Clayton, Vic, Australia
[2] Peter MacCallum Canc Ctr, Prostate Canc Translat Res Lab, Melbourne, Vic, Australia
[3] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Parkville, Vic, Australia
[4] Monash Univ, Biomed Discovery Inst, Canc Program, Clayton, Vic, Australia
[5] Monash Univ, Sch Biol Sci, Clayton, Vic, Australia
[6] Peter MacCallum Canc Ctr, Computat Canc Biol Program, Melbourne, Vic, Australia
[7] Hudson Inst Med Res, Clayton, Vic, Australia
[8] Monash Univ, Dept Physiol, Clayton, Vic, Australia
[9] RMIT Univ, Hlth Innovat Res Inst, Bundoora, Vic, Australia
[10] RMIT Univ, Sch Med Sci, Bundoora, Vic, Australia
基金
澳大利亚国家健康与医学研究理事会; 澳大利亚研究理事会; 英国医学研究理事会;
关键词
CRISP; CAP family; prostate cancer; EMT; cell adhesion; RICH SECRETORY PROTEIN-3; FUNCTIONAL-ANALYSIS; BETA-MICROSEMINOPROTEIN; CELL-LINE; CAP SUPERFAMILY; GENE-EXPRESSION; MOUSE; IDENTIFICATION; MSMB; OVEREXPRESSION;
D O I
10.1530/ERC-20-0092
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Identifying the factors stimulating prostate cancer cells migration and invasion has the potential to bring new therapeutic targets to the clinic. Cysteine-rich secretory protein 3 (CRISP3) is one of the most highly upregulated proteins durin g the transition of a healthy human prostatic epithelium to prostate cancer. Here we show using a genetically engineered mouse model of prostate cancer that CRISP3 production greatly facilitates disease progression from carcinoma in situ to invasive prostate cancer in vivo. This interpretation was confirmed using both human and mouse prostate cancer cell lines, which showed that exposure to CRISP3 enhanced cell motility and invasion. Further, using mass spectrometry, we show that CRISP3 induces changes in abundance of a subset of cell-cell adhesion proteins, including LASP1 and TJP1 both in vivo and in vitro. Collectively, these data identify CRISP3 as being pro-tumorigenic in the prostate and validate it as a potential target for therapeutic intervention.
引用
收藏
页码:415 / 430
页数:16
相关论文
共 50 条
  • [31] Expression and Localization of DDX3 in Prostate Cancer Progression and Metastasis
    Vellky, Jordan E.
    Ricke, Emily A.
    Huang, Wei
    Ricke, William A.
    AMERICAN JOURNAL OF PATHOLOGY, 2019, 189 (06): : 1256 - 1267
  • [32] Wnt Signaling Drives Prostate Cancer Bone Metastatic Tropism and Invasion
    Wang, Yugang
    Singhal, Udit
    Qiao, Yuanyuan
    Kasputis, Tadas
    Chung, Jae-Seung
    Zhao, Huiru
    Chammaa, Farah
    Belardo, Jacob A.
    Roth, Therese M.
    Zhang, Hao
    Zaslavsky, Alexander B.
    Palapattu, Ganesh S.
    Pienta, Kenneth J.
    Chinnaiyan, Arul M.
    Taichman, Russell S.
    Cackowski, Frank C.
    Morgan, Todd M.
    TRANSLATIONAL ONCOLOGY, 2020, 13 (04):
  • [33] Microvascular invasion as a predictor of disease progression in prostate cancer.
    Herman, CM
    Wilcox, GE
    Kattan, MW
    Scardino, PT
    Wheeler, TM
    MODERN PATHOLOGY, 1998, 11 (01) : 84A - 84A
  • [34] Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression
    Goodarzi, Hani
    Nguyen, Hoang C. B.
    Zhang, Steven
    Dill, Brian D.
    Molina, Henrik
    Tavazoie, Sohail F.
    CELL, 2016, 165 (06) : 1416 - 1427
  • [35] A polymorphism within the equine CRISP3 gene is associated with stallion fertility in Hanoverian warmblood horses
    Hamann, H.
    Jude, R.
    Sieme, H.
    Mertens, U.
    Toepfer-Petersen, E.
    Distl, O.
    Leeb, T.
    ANIMAL GENETICS, 2007, 38 (03) : 259 - 264
  • [36] CXCR5-CXCL13 expression regulates cellular mechanisms involved in prostate cancer cell invasion and correlates with prostate cancer progression
    Singh, Shailesh
    Singh, Rajesh
    Singh, Udai P.
    Kimbro, Sean K.
    Cooper, Carlton R.
    Chung, Leland W. K.
    Datta, Milton W.
    Didier, Peter J.
    Grizzle, William E.
    Lillard, James W., Jr.
    CANCER RESEARCH, 2006, 66 (08)
  • [37] Gene expression in the LNCaP human prostate cancer progression model: Progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo
    Chen, Qian
    Watson, Jeffery T.
    Marengo, Susan Ruth
    Decker, Keith S.
    Coleman, Ilsa
    Nelson, Peter S.
    Sikes, Robert A.
    CANCER LETTERS, 2006, 244 (02) : 274 - 288
  • [38] MET expression during prostate cancer progression
    Verhoef, Esther I.
    Kolijn, Kimberley
    De Herdt, Maria J.
    van der Steen, Berdine
    Hoogland, A. Marije
    Sleddens, Hein F. B. M.
    Looijenga, Leendert H. J.
    van Leenders, Geert J. L. H.
    ONCOTARGET, 2016, 7 (21) : 31029 - 31036
  • [39] Expression of Snail 1 in the Progression of Prostate Cancer
    Fulla, J.
    Poblete, C.
    Castellon, E. A.
    Contreras, H. R.
    EUROPEAN JOURNAL OF CANCER, 2012, 48 : S82 - S82
  • [40] PGC1α drives a metabolic block on prostate cancer progression
    Wallace, Martina
    Metallo, Christian M.
    NATURE CELL BIOLOGY, 2016, 18 (06) : 589 - 590