Higher-order localized wave solutions to a coupled fourth-order nonlinear Schrodinger equation

被引:0
|
作者
Song, N. [1 ]
Shang, H. J. [1 ]
Zhang, Y. F. [1 ]
Ma, W. X. [2 ,3 ,4 ,5 ]
机构
[1] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[5] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
来源
MODERN PHYSICS LETTERS B | 2022年 / 36卷 / 26N27期
基金
中国国家自然科学基金;
关键词
Coupled fourth-order nonlinear Schrodinger equation; generalized Darboux transformation; localized waves; ROGUE WAVES;
D O I
10.1142/S0217984922501469
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, higher-order localized waves for a coupled fourth-order nonlinear Schrodinger equation are investigated via a generalized Darboux transformation. The Nth-order localized wave solutions of this equation are derived via Lax pair and Darboux matrix. Evolution plots are made and dynamical characteristics of the obtained higher-order localized waves are analyzed through numerical simulation. It is observed that rogue waves coexist with dark-bright solitons and breathers. The presented results also show that different values of the involved parameters have diverse effects on the higher-order localized waves.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The Fourth-Order Dispersive Nonlinear Schrodinger Equation: Orbital Stability of a Standing Wave
    Natali, Fabio
    Pastor, Ademir
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (03): : 1326 - 1347
  • [42] A fourth-order difference scheme for the fractional nonlinear Schrodinger equation with wave operator
    Pan, Kejia
    Zeng, Jiali
    He, Dongdong
    Zhang, Saiyan
    APPLICABLE ANALYSIS, 2022, 101 (08) : 2886 - 2902
  • [43] Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation
    Zhu, Shihui
    Yang, Han
    Zhang, Jian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6186 - 6201
  • [44] Soliton Solutions and Conservation Laws for an Inhomogeneous Fourth-Order Nonlinear Schrodinger Equation
    Wang, Pan
    Qi, Feng-Hua
    Yang, Jian-Rong
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (11) : 1856 - 1864
  • [45] Localized wave solutions of a higher-order short pulse equation
    Li, Xinyue
    Zhang, Zhixin
    Zhao, Qiulan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):
  • [46] Localized wave solutions of a higher-order short pulse equation
    Xinyue Li
    Zhixin Zhang
    Qiulan Zhao
    The European Physical Journal Plus, 138
  • [47] Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrodinger-type equations
    Karpman, VI
    PHYSICAL REVIEW E, 1996, 53 (02) : R1336 - R1339
  • [48] Optical solitary wave solutions for the fourth-order dispersive cubic-quintic nonlinear Schrodinger equation
    Dai, Chao-Qing
    Chen, Jun-Lang
    Zhang, Jie-Fang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (15): : 2657 - 2668
  • [49] Global existence for rough solutions of a fourth-order nonlinear wave equation
    Zhang, Junyong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) : 635 - 644
  • [50] Collapse for the higher-order nonlinear Schrodinger equation
    Achilleos, V.
    Diamantidis, S.
    Frantzeskakis, D. J.
    Horikis, T. P.
    Karachalios, N. I.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 316 : 57 - 68