Source Identification of Traffic-Related Ultrafine Particles Data Mining Contest

被引:5
|
作者
Sabaliauskas, Kelly
Evans, Greg [1 ]
Jeong, Cheol-Heon [1 ]
机构
[1] Univ Toronto, Southern Ontario Ctr Atmospher Aerosol Res, 200 Coll St, Toronto, ON M5S 3E5, Canada
基金
加拿大创新基金会;
关键词
atmospheric PM; ultrafine particles; UFP; aerosol; particle size distribution; PARTICULATE MATTER;
D O I
10.1016/j.procs.2012.09.118
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Atmospheric particulate matter (PM) is a complex mixture of microscopic particles with different shapes, sizes and chemical compositions. The ultrafine size fraction of PM consists of particles with diameters less than 100nm. In urban areas, traffic is a dominant source of ultrafine particles (UFP). Gasoline-powered and diesel-powered engines emit UFP with different size distributions and chemical compositions. This paper describes the UFP and supporting data provided by Southern Ontario Centre for Atmospheric Aerosol Research for the purposes of identifying particle size distributions emitted from diesel-powered and gasoline-powered vehicles. (C) 2012 Published by Elsevier B. V. Selection and/or peer-review under responsibility of Program Committee of INNS-WC 2012
引用
收藏
页码:99 / 107
页数:9
相关论文
共 50 条
  • [21] Learning for classification of traffic-related object on RGB-D data
    Xia, Yingjie
    Shi, Xingmin
    Zhao, Na
    MULTIMEDIA SYSTEMS, 2017, 23 (01) : 129 - 138
  • [22] Learning for classification of traffic-related object on RGB-D data
    Yingjie Xia
    Xingmin Shi
    Na Zhao
    Multimedia Systems, 2017, 23 : 129 - 138
  • [23] An instantaneous spatiotemporal model for predicting traffic-related ultrafine particle concentration through mobile noise measurements
    Lin, Ming-Yeng
    Guo, Yi-Xin
    Chen, Yu-Cheng
    Chen, Wei-Ting
    Young, Li-Hao
    Lee, Kuo-Jung
    Wu, Zhu-You
    Tsai, Perng-Jy
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 636 : 1139 - 1148
  • [24] Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction
    Jarlskog, Ida
    Stromvall, Ann-Margret
    Magnusson, Kerstin
    Galfi, Helen
    Bjorklund, Karin
    Polukarova, Maria
    Garcao, Rita
    Markiewicz, Anna
    Aronsson, Maria
    Gustafsson, Mats
    Norin, Malin
    Blom, Lena
    Andersson-Skold, Yvonne
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 774
  • [25] The Effect Of Hepa Air Purification On Asthmatic Children Exposed To Traffic-Related Airborne Particles
    James, C.
    Cox, J.
    Isiugo, K.
    Indugula, R.
    Wolfe, C.
    Jandarov, R.
    Bernstein, D.
    Ryan, P.
    Reponen, T.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [26] HEPA filtration improves asthma control in children exposed to traffic-related airborne particles
    James, Christine
    Bernstein, David, I
    Cox, Jennie
    Ryan, Patrick
    Wolfe, Christopher
    Jandarov, Roman
    Newman, Nicholas
    Indugula, Reshmi
    Reponen, Tiina
    INDOOR AIR, 2020, 30 (02) : 235 - 243
  • [27] Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam
    Fischer, PH
    Hoek, G
    van Reeuwijk, H
    Briggs, DJ
    Lebret, E
    van Wijnen, JH
    Kingham, S
    Elliott, PE
    ATMOSPHERIC ENVIRONMENT, 2000, 34 (22) : 3713 - 3722
  • [28] Characterization of Ultrafine Particles and Other Traffic Related Pollutants near Roadways in Beijing
    Yu, Nu
    Zhu, Yifang
    Xie, Xiaosen
    Yan, Caiqing
    Zhu, Tong
    Zheng, Mei
    AEROSOL AND AIR QUALITY RESEARCH, 2015, 15 (04) : 1261 - 1269
  • [29] A scalable blockchain-based scheme for traffic-related data sharing in VANETs
    Diallo, El-hacen
    Dib, Omar
    Al Agha, Khaldoun
    BLOCKCHAIN-RESEARCH AND APPLICATIONS, 2022, 3 (03):
  • [30] Coagulation patterns and the impacts on traffic-related ultrafine particle dispersion in road tunnels employing dynamic mesh algorithms
    Yu Zhao
    Wanning Yang
    Xiaocheng Song
    Chaowen Jiang
    Yao Feng
    Environmental Science and Pollution Research, 2021, 28 : 61380 - 61396