CONTROL AFFINE SYSTEMS ON SEMISIMPLE THREE-DIMENSIONAL LIE GROUPS

被引:8
|
作者
Biggs, R. [1 ]
Remsing, C. C. [1 ]
机构
[1] Rhodes Univ, Dept Pure & Appl Math, ZA-6140 Grahamstown, South Africa
关键词
nonlinear control system; feedback control; affine space; semisimple Lie algebra;
D O I
10.2478/v10157-012-0038-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the full-rank left-invariant control affine systems evolving on (real) semisimple three-dimensional Lie groups. This is accomplished by reducing the problem to that of classifying the affine subspaces of the Lie algebras so (2; 1) and so (3).
引用
收藏
页码:399 / 414
页数:16
相关论文
共 50 条
  • [31] On local isometric embeddings of three-dimensional Lie groups
    Yoshio Agaoka
    Takahiro Hashinaga
    Geometriae Dedicata, 2020, 205 : 191 - 219
  • [32] Sectional and Ricci Curvature for Three-Dimensional Lie Groups
    Thompson, Gerard
    Bhattarai, Giriraj
    JOURNAL OF MATHEMATICS, 2016, 2016
  • [33] Jacobi structures on real two- and three-dimensional Lie groups and their Jacobi-Lie systems
    Amirzadeh-Fard, H.
    Haghighatdoost, G.
    Kheradmandynia, P.
    Rezaei-Aghdam, A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 205 (02) : 1393 - 1410
  • [34] PARALLEL SURFACES IN THREE-DIMENSIONAL LORENTZIAN LIE GROUPS
    Calvaruso, Giovanni
    Van der Veken, Joeri
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (01): : 223 - 250
  • [35] Generalised killing spinors on three-dimensional Lie groups
    Artacho, Diego
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [36] Invariant Ricci collineations on three-dimensional Lie groups
    Calvino-Louzao, E.
    Seoane-Bascoy, J.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 59 - 71
  • [37] On local isometric embeddings of three-dimensional Lie groups
    Agaoka, Yoshio
    Hashinaga, Takahiro
    GEOMETRIAE DEDICATA, 2020, 205 (01) : 191 - 219
  • [38] Extensions of Three Matrix Inequalities to Semisimple Lie Groups
    Liu, Xuhua
    Tam, Tin-Yau
    SPECIAL MATRICES, 2014, 2 (01): : 148 - 154
  • [39] Affine and bilinear systems on Lie groups
    Ayala, Victor
    Da Silva, Adriano
    Ferreira, Max
    SYSTEMS & CONTROL LETTERS, 2018, 117 : 23 - 29
  • [40] Codazzi Tensors and the Quasi-Statistical Structure Associated with Affine Connections on Three-Dimensional Lorentzian Lie Groups
    Wu, Tong
    Wang, Yong
    SYMMETRY-BASEL, 2021, 13 (08):