BSMART: A MATLAB/C toolbox for analysis of multichannel neural time series

被引:136
|
作者
Cui, Jie [1 ]
Xu, Lei [1 ]
Bressler, Steven L. [2 ]
Ding, Mingzhou [3 ]
Liang, Hualou [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Sch Hlth Informat Sci, Houston, TX 77030 USA
[2] Florida Atlantic Univ, Ctr Complex Syst & Brain Sci, Boca Raton, FL 33431 USA
[3] Univ Florida, Dept Biomed Engn, Gainesville, FL 32611 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Open source toolbox; Neural time series; Multivariate signal analysis; Network analysis; Granger causality spectrum;
D O I
10.1016/j.neunet.2008.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have developed a MATLAB/C toolbox, Brain-SMART (System for Multivariate AutoRegressive Time series, or BSMART), for spectral analysis of continuous neural time series data recorded simultaneously from multiple sensors. Available functions include time series data importing/exporting, preprocessing (normalization and trend removal), AutoRegressive (AR) modeling (multivariate/bivariate model estimation and validation), spectral quantity estimation (auto power, coherence and Granger causality spectra), network analysis (including coherence and causality networks) and visualization (including data, power, coherence and causality views). The tools for investigating causal network structures in respect of frequency bands are unique functions provided by this toolbox. All functionality has been integrated into a simple and user-friendly graphical user interface (GUI) environment designed for easy accessibility. Although we have tested the toolbox only on Windows and Linux operating systems, BSMART itself is system independent. This toolbox is freely available (http://www.brain-smart.org) under the GNU public license for open source development. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1094 / 1104
页数:11
相关论文
共 50 条
  • [31] Use of MATLAB neural networks toolbox in a character recognition problem
    Trebar, M
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2005, 13 (01) : 66 - 71
  • [32] A MATLAB Toolbox for Structural Analysis of Linear Systems
    Geisel, Alfred
    Svaricek, Ferdinand
    IFAC PAPERSONLINE, 2019, 52 (17): : 7 - 12
  • [33] PAT: A power analysis toolbox for MATLAB/Simulink
    Schoder, K
    Hasanovic, A
    Feliachi, A
    Hasanovic, A
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (01) : 42 - 47
  • [34] HYDRORECESSION: A Matlab toolbox for streamflow recession analysis
    Arciniega-Esparza, Saul
    Agustin Brena-Naranjo, Jose
    Pedrozo-Acuna, Adrian
    Mario Appendini, Christian
    COMPUTERS & GEOSCIENCES, 2017, 98 : 87 - 92
  • [35] A MATLAB TOOLBOX FOR SYMBOLIC ELECTRICAL CIRCUIT ANALYSIS
    Martinez Martinez, Juan Antonio
    Canas Carreton, Miguel
    Sanchez Martinez, Manuel
    EDULEARN16: 8TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2016, : 6723 - 6732
  • [36] MagAnalyst: A MATLAB Toolbox for Anhysteretic Magnetization Analysis
    Silveyra, Josefina M.
    Gonzalez, Matias I.
    Gonzalez, Tomas F.
    Garrido, Juan M. Conde
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (09) : 1 - 1
  • [37] A MATLAB toolbox for Granger causal connectivity analysis
    Seth, Anil K.
    JOURNAL OF NEUROSCIENCE METHODS, 2010, 186 (02) : 262 - 273
  • [38] SBEToolbox: A Matlab Toolbox for Biological Network Analysis
    Konganti, Kranti
    Wang, Gang
    Yang, Ence
    Cai, James J.
    EVOLUTIONARY BIOINFORMATICS, 2013, 9 : 355 - 362
  • [39] An update on the MATLAB hyperspectral image analysis toolbox
    Rosario-Torres, S
    Arzuaga-Cruz, E
    Velez-Reyes, M
    Jiménez-Rodríguez, LO
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XI, 2005, 5806 : 743 - 752
  • [40] The particle tracking and analysis toolbox (PaTATO) for Matlab
    Fredj, Erick
    Carlson, Daniel F.
    Amitai, Yael
    Gozolchiani, Avi
    Gildor, Hezi
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2016, 14 (09): : 586 - 599