A hyper-Poisson regression model for overdispersed and underdispersed count data

被引:51
|
作者
Saez-Castillo, A. J. [1 ]
Conde-Sanchez, A. [1 ]
机构
[1] Univ Jaen, Dept Stat & Operat Res, Linares 23700, Jaen, Spain
关键词
Regression model; Count data; Hyper-Poisson; Overdispersion; Underdispersion; SERIES;
D O I
10.1016/j.csda.2012.12.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Poisson regression model is the most common framework for modeling count data, but it is constrained by its equidispersion assumption. The hyper-Poisson regression model described in this paper generalizes it and allows for over- and under-dispersion, although, unlike other models with the same property, it introduces the regressors in the equation of the mean. Additionally, regressors may also be introduced in the equation of the dispersion parameter, in such a way that it is possible to fit data that present overdispersion and underdispersion in different levels of the observations. Two applications illustrate that the model can provide more accurate fits than those provided by alternative usual models. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 157
页数:10
相关论文
共 50 条
  • [21] An empirical model for underdispersed count data
    Ridout, MS
    Besbeas, P
    STATISTICAL MODELLING, 2004, 4 (01) : 77 - 89
  • [22] Hyper-Poisson Photon Statistics
    Yu. I. Bogdanov
    N. A. Bogdanova
    K. G. Katamadze
    G. V. Avosopyants
    V. F. Lukichev
    JETP Letters, 2020, 111 : 543 - 548
  • [23] Hyper-Poisson Photon Statistics
    Bogdanov, Yu. I.
    Bogdanova, N. A.
    Katamadze, K. G.
    Avosopyants, G. V.
    Lukichev, V. F.
    JETP LETTERS, 2020, 111 (10) : 543 - 548
  • [24] A multivariate Poisson regression model for count data
    Munoz-Pichardo, J. M.
    Pino-Mejias, R.
    Garcia-Heras, J.
    Ruiz-Munoz, F.
    Luz Gonzalez-Regalado, M.
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2525 - 2541
  • [25] Analysis of overdispersed count data by mixtures of poisson variables and poisson processes
    Novo Nordisk, Building 9ES, Novo Alle, DK-2880 Bagsvaerd, Denmark
    不详
    不详
    Biometrics, 4 (1225-1238):
  • [26] Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes
    Hougaard, P
    Lee, MLT
    Whitmore, GA
    BIOMETRICS, 1997, 53 (04) : 1225 - 1238
  • [27] Quasi-poisson vs. negative binomial regression: How should we model overdispersed count data?
    Hoef, Jay M. Ver
    Boveng, Peter L.
    ECOLOGY, 2007, 88 (11) : 2766 - 2772
  • [28] Efficient regression modeling for correlated and overdispersed count data
    Niu, Xiaomeng
    Cho, Hyunkeun Ryan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (24) : 6005 - 6018
  • [29] Distributions to model overdispersed count data
    Coly, Sylvain
    Yao, Anne-Franoise
    Abrial, David
    Charras-Garrido, Myriam
    JOURNAL OF THE SFDS, 2016, 157 (02): : 39 - 63
  • [30] NOTE ON THE MOMENTS OF HYPER-POISSON DISTRIBUTION
    AHMAD, M
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1979, 4 (01): : 57 - 58