Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning

被引:115
|
作者
Deng, Yue [1 ]
Bao, Feng [2 ]
Dai, Qionghai [2 ]
Wu, Lani F. [1 ]
Altschuler, Steven J. [1 ]
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[2] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Dept Automat, Beijing, Peoples R China
关键词
NETWORK;
D O I
10.1038/s41592-019-0353-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in large-scale single-cell RNA-seq enable fine-grained characterization of phenotypically distinct cellular states in heterogeneous tissues. We present scScope, a scalable deep-learning-based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles.
引用
收藏
页码:311 / +
页数:7
相关论文
共 50 条
  • [21] Cell type discovery using single-cell transcriptomics: implications for ontological representation
    Aevermann, Brian D.
    Novotny, Mark
    Bakken, Trygve
    Miller, Jeremy A.
    Diehl, Alexander D.
    Osumi-Sutherland, David
    Lasken, Roger S.
    Lein, Ed S.
    Scheuermann, Richard H.
    HUMAN MOLECULAR GENETICS, 2018, 27 (R1) : R40 - R47
  • [22] Bayesian deep learning for single-cell analysis
    Gregory P. Way
    Casey S. Greene
    Nature Methods, 2018, 15 : 1009 - 1010
  • [23] Bayesian deep learning for single-cell analysis
    Way, Gregory P.
    Greene, Casey S.
    NATURE METHODS, 2018, 15 (12) : 1009 - 1010
  • [24] Deep learning in single-cell and spatial transcriptomics data analysis: advances and challenges from a data science perspective
    Ge, Shuang
    Sun, Shuqing
    Xu, Huan
    Cheng, Qiang
    Ren, Zhixiang
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (02)
  • [25] Single-Cell Genomics Unravels Brain Cell-Type Complexity
    Guillaumet-Adkins, Amy
    Heyn, Holger
    NEUROEPIGENOMICS IN AGING AND DISEASE, 2017, 978 : 393 - 407
  • [26] Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference
    Luo, Yutong
    Fan, Ruzong
    GENETIC EPIDEMIOLOGY, 2022, 46 (08) : 615 - 628
  • [27] scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics
    Dong, Jiayi
    Zhang, Yin
    Wang, Fei
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [28] scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics
    Jiayi Dong
    Yin Zhang
    Fei Wang
    BMC Bioinformatics, 23
  • [29] A Gene Ontology-Driven Wide and Deep Learning Architecture for Cell-Type Classification from Single-Cell RNA-seq Data
    Coppola, Gianmarco
    Fiannaca, Antonino
    La Rosa, Massimo
    La Paglia, Laura
    Urso, Alfonso
    Gaglio, Salvatore
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 323 - 335
  • [30] CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics
    Jin, Suoqin
    Plikus, Maksim V.
    Nie, Qing
    NATURE PROTOCOLS, 2025, 20 (01) : 180 - 219