Constructions of quantum convolutional codes

被引:19
|
作者
Grassl, Markus [1 ]
Roetteler, Martin [2 ]
机构
[1] Univ Karlsruhe TH, Fak Informat, Inst Algorithmen & Kognit Syst, Fasanengarten 5, D-76128 Karlsruhe, Germany
[2] NEC Lab Amer Inc, Princeton, NJ 08540 USA
关键词
D O I
10.1109/ISIT.2007.4557325
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problems of constructing quantum convolutional codes (QCCs) and of encoding them. The first construction is a CSS-type construction which allows us to find QCCs of rate 2/4. The second construction yields a quantum convolutional code by applying a product code construction to an arbitrary classical convolutional code and an arbitrary quantum block code. We show that the resulting codes have highly structured and efficient encoders. Furthermore, we show that the resulting quantum circuits have finite depth, independent of the lengths of the input stream, and show that this depth is polynomial in the degree and frame size of the code.
引用
收藏
页码:816 / +
页数:2
相关论文
共 50 条
  • [31] Family of fast quantum stabilizer codes constructions
    Yuan Li
    Xingxiang Liu
    Optical Review, 2010, 17 : 47 - 49
  • [32] Some New Constructions of Quantum MDS Codes
    Fang, Weijun
    Fu, Fang-Wei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (12) : 7840 - 7847
  • [33] Improved Constructions for Nonbinary Quantum BCH Codes
    Qian, Jianfa
    Zhang, Lina
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (04) : 1355 - 1363
  • [34] Constructions of quasi-twisted quantum codes
    Jingjie Lv
    Ruihu Li
    Junli Wang
    Quantum Information Processing, 2020, 19
  • [35] Constructions of new families of nonbinary quantum codes
    La Guardia, Giuliano G.
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [36] Improved Constructions for Nonbinary Quantum BCH Codes
    Jianfa Qian
    Lina Zhang
    International Journal of Theoretical Physics, 2017, 56 : 1355 - 1363
  • [37] Family of fast quantum stabilizer codes constructions
    Li, Yuan
    Liu, Xingxiang
    OPTICAL REVIEW, 2010, 17 (02) : 47 - 49
  • [38] Asymmetric quantum codes: constructions, bounds and performance
    Sarvepalli, Pradeep Kiran
    Klappenecker, Andreas
    Roetteler, Martin
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2105): : 1645 - 1672
  • [39] New optimal quantum convolutional codes
    Zhu, Shixin
    Wang, Liqi
    Kai, Xiaoshan
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (03)
  • [40] The MacWilliams Identity for Quantum Convolutional Codes
    Lai, Ching-Yi
    Hsieh, Min-Hsiu
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 911 - 915