A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation

被引:31
|
作者
Yapman, Omer [1 ]
Amiraliyev, Gabil M. [1 ]
机构
[1] Erzincan Binali Yildirim Univ, Fac Arts & Sci, Dept Math, TR-24100 Erzincan, Turkey
关键词
Volterra integro-differential equation; singular perturbation; finite difference; uniform convergence; DIFFERENCE SCHEME;
D O I
10.1080/00207160.2019.1614565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the second-order accurate homogeneous (non-hybrid) type difference scheme for solving a singularly perturbed first-order Volterra integro-differential equation. It is shown that the method displays uniform convergence of on a special non-uniform mesh, where N is the mesh parameter. Numerical results are included to verify the theoretical estimates.
引用
收藏
页码:1293 / 1302
页数:10
相关论文
共 50 条
  • [41] A fitted operator numerical method for singularly perturbed Fredholm integro-differential equation with integral initial condition
    Aklilu Fufa Oljira
    Mesfin Mekuria Woldaregay
    BMC Research Notes, 17
  • [42] Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation
    Yapman, Omer
    Amiraliyev, Gabil M.
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [43] An equidistributed grid-based second-order scheme for a singularly perturbed Fredholm integro-differential equation with an interior layer
    Manebo, Wubeshet Seyoum
    Woldaregay, Mesfin Mekuria
    Dinka, Tekle Gemechu
    Duressa, Gemechis File
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 464
  • [44] An Exponentially Fitted Spline Method for Second-Order Singularly Perturbed Delay Differential Equations
    Podila Pramod Chakravarthy
    S. Dinesh Kumar
    R. Nageshwar Rao
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 515 - 519
  • [45] A Spectral Method for Second Order Volterra Integro-Differential Equation with Pantograph Delay
    Zheng, Weishan
    Chen, Yanping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (02) : 131 - 145
  • [46] An Exponentially Fitted Spline Method for Second-Order Singularly Perturbed Delay Differential Equations
    Chakravarthy, Podila Pramod
    Kumar, S. Dinesh
    Rao, R. Nageshwar
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 515 - 519
  • [47] A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation
    Bashier, E. B. M.
    Patidar, K. C.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (05) : 779 - 794
  • [48] ABSTRACT LINEAR VOLTERRA SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATIONS
    Zakora, D. A.
    EURASIAN MATHEMATICAL JOURNAL, 2016, 7 (02): : 75 - 91
  • [49] A Monotone Second-Order Numerical Method for Fredholm Integro-Differential Equation
    Amirali, Ilhame
    Durmaz, Muhammet Enes
    Amiraliyev, Gabil M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (07)
  • [50] A Robust Numerical Method for a Singularly Perturbed Fredholm Integro-Differential Equation
    Durmaz, Muhammet Enes
    Amiraliyev, Gabil M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)