Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia

被引:23
|
作者
Tejera, Eduardo [1 ]
Bernardes, Joao [2 ,3 ]
Rebelo, Irene [1 ,4 ]
机构
[1] Univ Porto, Inst Mol & Cell Biol IBMC, P-4100 Oporto, Portugal
[2] Univ Porto, Fac Med, Ctr Res Hlth Technol & Informat Syst CINTESIS, P-4100 Oporto, Portugal
[3] Sao Joao Hosp Porto, INEB Inst Biomed Engn, Dept Obstet & Gynecol, Oporto, Portugal
[4] Univ Porto, Fac Pharm, Dept Biol Sci, Lab Biochem, P-4100 Oporto, Portugal
关键词
MATERNAL SERUM; HYPERTENSIVE DISORDERS; TOPOLOGICAL ANALYSIS; GROWTH RESTRICTION; EXPRESSION DATA; ACTIVIN-A; PLACENTA; WOMEN; BIOINFORMATICS; PREDICTION;
D O I
10.1186/1755-8794-6-51
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: In this study, we explored the gene prioritization in preeclampsia, combining co-expression network analysis and genetic algorithms optimization approaches. We analysed five public projects obtaining 1,146 significant genes after cross-platform and processing of 81 and 149 microarrays in preeclamptic and normal conditions, respectively. Methods: After co-expression network construction, modular and node analysis were performed using several approaches. Moreover, genetic algorithms were also applied in combination with the nearest neighbour and discriminant analysis classification methods. Results: Significant differences were found in the genes connectivity distribution, both in normal and preeclampsia conditions pointing to the need and importance of examining connectivity alongside expression for prioritization. We discuss the global as well as intra-modular connectivity for hubs detection and also the utility of genetic algorithms in combination with the network information. FLT1, LEP, INHA and ENG genes were identified according to the literature, however, we also found other genes as FLNB, INHBA, NDRG1 and LYN highly significant but underexplored during normal pregnancy or preeclampsia. Conclusions: Weighted genes co-expression network analysis reveals a similar distribution along the modules detected both in normal and preeclampsia conditions. However, major differences were obtained by analysing the nodes connectivity. All models obtained by genetic algorithm procedures were consistent with a correct classification, higher than 90%, restricting to 30 variables in both classification methods applied. Combining the two methods we identified well known genes related to preeclampsia, but also lead us to propose new candidates poorly explored or completely unknown in the pathogenesis of preeclampsia, which may have to be validated experimentally.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Identification of co-expression network correlated with different periods of adipogenic and osteogenic differentiation of BMSCs by weighted gene co-expression network analysis (WGCNA)
    Liu, Yu
    Tingart, Markus
    Lecouturier, Sophie
    Li, Jianzhang
    Eschweiler, Joerg
    BMC GENOMICS, 2021, 22 (01)
  • [32] Weighted gene co-expression network analysis of gene modules for the prognosis of esophageal cancer
    Zhang, Cong
    Sun, Qian
    JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY-MEDICAL SCIENCES, 2017, 37 (03) : 319 - 325
  • [33] Weighted gene co-expression network analysis of gene modules for the prognosis of esophageal cancer
    Cong Zhang
    Qian Sun
    Journal of Huazhong University of Science and Technology [Medical Sciences], 2017, 37 : 319 - 325
  • [34] Weighted Gene Co-Expression Network Analysis Identification and Experimental Validation of Genetic Determinants of Right Ventricular Function
    Rau, Christoph
    Lee, Katie
    Chukwuneke, Jeffrey
    Liu Yanan
    Li Qing
    Wang Yibin
    Tsai, Emily J.
    CIRCULATION RESEARCH, 2017, 121
  • [35] Identification of signature of gene expression in biliary atresia using weighted gene co-expression network analysis
    Wang, Yongliang
    Yuan, Hongtao
    Zhao, Maojun
    Fang, Li
    MEDICINE, 2022, 101 (37) : E30232
  • [36] A Research for Weighted Gene Co-expression Network Model
    Wang, Jun
    Wang, Weiping
    Liu, Wen
    Zhou, Zhong
    Wang, Xiaoying
    2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND COMMUNICATION TECHNOLOGY (ICCECT 2012), 2012, : 770 - 773
  • [37] Differential Gene Co-expression Network using BicMix
    Wibawa, N. A.
    Bustaman, Alhadi
    Siswantining, Titin
    PROCEEDINGS OF THE SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH) 2018, 2019, 2084
  • [38] Parameterization of asymmetric sigmoid functions in weighted gene co-expression network analysis
    Karabekmez, Muhammed Erkan
    Yarici, Merve
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 108
  • [39] GENE CO-EXPRESSION NETWORK ANALYSIS OF PRECURSOR LESIONS IN FAMILIAL PANCREATIC CANCER
    Tan, Ming
    de Muckadell, Ove B. Schaffalitzky
    Joergensen, Maiken T.
    GASTROENTEROLOGY, 2020, 158 (06) : S1137 - S1138
  • [40] Novel biomarkers identified by weighted gene co-expression network analysis for atherosclerosis
    Ni, Jiajun
    Huang, Kaijian
    Xu, Jialin
    Lu, Qi
    Chen, Chu
    HERZ, 2024, 49 (03) : 198 - 209