Fusion of LIDAR Data with Hyperspectral and High-Resolution Imagery for Automation of DIRSIG Scene Generation

被引:0
|
作者
Givens, Ryan N. [1 ]
Walli, Karl C. [1 ]
Eismann, Michael T. [2 ]
机构
[1] Air Force Inst Technol, Dept Engn Phys, Wright Patterson AFB, OH USA
[2] Air Force Inst Technol, Wright Patterson AFB, OH USA
关键词
Registration; fusion; synthetic imagery; DIRSIG;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Developing new remote sensing instruments is a costly and time consuming process. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model gives users the ability to create synthetic images for a proposed sensor before building it. However, to produce synthetic images, DIRSIG requires facetized, three-dimensional models attributed with spectral and texture information which can themselves be costly and time consuming to produce. Recent work by Walli has shown that coincident LIDAR data and high-resolution imagery can be registered and used to automatically generate the geometry and texture information needed for a DIRSIG scene. This method, called LIDAR Direct, greatly reduces the time and manpower needed to generate a scene, but still requires user interaction to attribute facets with either library or field measured spectral information. This paper builds upon that work and presents a method for autonomously generating the geometry, texture, and spectral content for a scene when coincident LIDAR data, high-resolution imagery, and HyperSpectral Imagery (HSI) of a site are available. Then the method is demonstrated on real data.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Data fusion of high-resolution satellite imagery and GIS data for automatic building extraction
    Guo Zhou
    Luo Liqun
    Wang Wanyi
    Du Shihong
    3RD ISPRS IWIDF 2013, 2013, 40-7-W1 : 23 - 28
  • [22] SPATIAL-SPECTRAL DATA FUSION FOR RESOLUTION ENHANCEMENT OF HYPERSPECTRAL IMAGERY
    Mianji, Fereidoun A.
    Zhang, Ye
    Gu, Yanfeng
    Babakhani, Asad
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2313 - +
  • [23] A multilevel decision fusion approach for urban mapping using very high-resolution multi/hyperspectral imagery
    Huang, Xin
    Zhang, Liangpei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (11) : 3354 - 3372
  • [24] Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping
    Priem, Frederik
    Canters, Frank
    REMOTE SENSING, 2016, 8 (10)
  • [25] Multiview Learning for Impervious Surface Mapping Using High-Resolution Multispectral Imagery and LiDAR Data
    Luo, Hui
    Yang, Fupeng
    Feng, Xibo
    Dong, Yanni
    Zhang, Yuxiang
    Min, Geyong
    Li, Jianxin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 7866 - 7881
  • [26] Automatic detection and agronomic characterization of olive groves using high-resolution imagery and LIDAR data
    Caruso, T.
    Ruehl, J.
    Sciortino, R.
    Marra, F. P.
    La Scalia, G.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVI, 2014, 9239
  • [27] Integration of high-resolution imagery and LiDAR data for object-based classification of urban area
    Mehta, A.
    Dikshit, O.
    Venkataramani, K.
    GEOCARTO INTERNATIONAL, 2014, 29 (04) : 418 - 432
  • [28] RESEARCH ON FUSION AND REGISTRATION METHOD FOR HIGH-RESOLUTION SATELLITE IMAGE AND VEHICLE LIDAR DATA
    Tang, Feifei
    Shen, Cheng
    An, Aobo
    Wan, Yun
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3303 - 3306
  • [29] Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction
    Beger, Reinhard
    Gedrange, Claudia
    Hecht, Robert
    Neubert, Marco
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (06) : S40 - S51
  • [30] PROBABILITY FUSION FOR HYPERSPECTRAL AND LIDAR DATA
    Ge, Chiru
    Du, Qian
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2675 - 2678