Artificial neural network-based internal leakage fault detection for hydraulic actuators: An experimental investigation

被引:19
|
作者
Yao, Zhikai [1 ,2 ]
Yu, Yongping [3 ]
Yao, Jianyong [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] PLA Univ Sci & Technol, Sch Field Engn, Nanjing, Jiangsu, Peoples R China
[3] Aviat Key Lab Sci & Technol Aero Electromech Syst, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Internal leakage; artificial neural networks; hydraulic actuators; fault detection; WAVELET-BASED APPROACH; DISSIPATIVITY ANALYSIS; DIAGNOSIS; IDENTIFICATION;
D O I
10.1177/0959651816678502
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Internal leakage is a typical fault in the hydraulic systems, which may be caused by seal damage, and result in deteriorated performance of the system. To study this issue, this article carries out an experimental investigation of artificial neural network-based detection method for internal leakage fault. A period of pressure signal at one chamber of the actuator was taken in response to sinusoidal-like inputs for the closed-loop controlled system as a basic signal unit, and totally, 1000 periodic signal units are obtained from the experiments. The above experimental measurements are repetitively implemented with 11 different active exerted internal leakage levels, that is, totally 11,000 basic signal units are obtained. For signal processing, the pressure signal in the operation condition without active exerted leakage is chosen to generate a baseline with suitable pre-proceed, and the relative values of the other basic signal units (D-value between the baseline and other original signals) act as the global samples of the following artificial neural networks, traditional back propagation neural network, deep neural network, convolution neural network and auto-encoder neural network, separately; 8800 samples by random extraction as train samples to train the above neural networks and the other samples different from the train samples act as test samples to examine the detection accuracy of the proposed method. It is shown that the deep neural network with five layers can obtain a best detection accuracy (92.23%) of the above-mentioned neural networks. In addition, the methods based on wavelet transform and Hilbert-Huang transform are also applied, and a comparison of these methods is provided at last. From the comparison, it is shown that the proposed detection method obtains a good result without a need to model the internal leakage or a complicated signal processing.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条
  • [41] Artificial neural network-based performance assessments
    Stevens, R
    Ikeda, J
    Casillas, A
    Palacio-Cayetano, J
    Clyman, S
    COMPUTERS IN HUMAN BEHAVIOR, 1999, 15 (3-4) : 295 - 313
  • [42] Artificial neural network-based psychrometric predictor
    Mittal, GS
    Zhang, J
    BIOSYSTEMS ENGINEERING, 2003, 85 (03) : 283 - 289
  • [43] Investigation of a convolutional neural network-based approach for license plate detection
    Yong Cao
    Journal of Optics, 2024, 53 : 697 - 703
  • [44] RLC Fault Detection Based on Image Processing and Artificial Neural Network
    Rohan, Ali
    Kim, Sung Ho
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2019, 19 (02) : 78 - 87
  • [45] Artificial neural network-based performance assessments
    Stevens, R.
    Ikeda, J.
    Casillas, A.
    Palacio-Cayetano, J.
    Clyman, S.
    Computers in Human Behavior, 1999, 15 (03): : 295 - 313
  • [46] Artificial neural network-based face recognition
    Réda, A
    Aoued, B
    ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 439 - 442
  • [47] AN EXPERIMENTAL STUDY ON THE EFFECTIVENESS OF ARTIFICIAL NEURAL NETWORK-BASED STOCK INDEX PREDICTION
    Tsai, Yichi
    Zhao, Qiangfu
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 149 - 154
  • [48] Neural network-based face detection
    Rowley, HA
    Baluja, S
    Kanade, T
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (01) : 23 - 38
  • [49] Neural network-based face detection
    Rowley, HA
    Baluja, S
    Kanade, T
    IMAGE UNDERSTANDING WORKSHOP, 1996 PROCEEDINGS, VOLS I AND II, 1996, : 725 - 735
  • [50] Neural network-based face detection
    Rowley, HA
    Baluja, S
    Kanade, T
    1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 203 - 208