Optical phase conjugation (OPC) of multiwavelength signals in a dispersion-shifted fiber (DSF), which can be used for dispersion compensation in the wavelength division multiplexing communication system, is theoretically studied, The multiwavelength phase-conjugate signals are generated by four-wave mixing (FWM) in the dispersion-shifted fiber, There are the pulse-shape distortion and the induced frequency chirping in the phase conjugate signals owing to pump depletion and the cross-phase modulation among the signals and phase-conjugate signals, respectively. The FWM among the pump wave, signals, and phase-conjugate signals causes unequal conversion efficiencies for the multiwavelength signals and enhances the induced frequency chirping in the phase-conjugate signals, The induced frequency chirping may deteriorate the restoration of the pulse shape, Both the pulse-shape distortion and induced frequency chirping increase with the signal and pump powers. The formula for the induced frequency chirping that is only caused by the signals through cross-phase modulation is derived, The requirement of the signal power in the dispersion-shifted fiber for the restoration of the pulse shape by the optical phase conjugation is estimated and numerically verified.