Mathematical modeling of suspension bridges

被引:8
|
作者
Holubová-Tajcová, G [1 ]
机构
[1] Univ W Bohemia, Ctr Appl Math, Pilsen 30614, Czech Republic
关键词
nonlinear beam equation; periodic oscillations; jumping nonlinearities;
D O I
10.1016/S0378-4754(99)00071-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Since the collapse of Tacoma Narrows Bridge in 1940, scientists try to find out and clear up the real cause of this disaster. The main problem seems to be the fundamental nonlinearity of a dynamical system describing a behavior of a suspension bridge which results in its nonunique solvability. We would like to explain several approaches to modeling of periodic oscillations of suspension bridges and state a short survey of known results in this field, concerning especially the existence of a unique solution. (C) 1999 IMACS/Elsevier Science B.V. All rights reserved.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 50 条
  • [21] Mathematical modeling of combustion of a frozen suspension of nanosized aluminum
    A. Yu. Krainov
    V. A. Poryazov
    Combustion, Explosion, and Shock Waves, 2016, 52 : 177 - 183
  • [22] Mathematical modeling of microfiltration of polydisperse suspension on heterogeneous membranes
    Filippov, A. N.
    Iksanov, R. Kh.
    PETROLEUM CHEMISTRY, 2012, 52 (07) : 520 - 526
  • [23] Mathematical modeling of combustion of a frozen suspension of nanosized aluminum
    Krainov, A. Yu.
    Poryazov, V. A.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2016, 52 (02) : 177 - 183
  • [24] OF CABLES AND BRIDGES + FAMOUS SUSPENSION BRIDGES
    GILBERT, C
    HISTORIA, 1986, (474): : 78 - 82
  • [25] Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges
    Liu, Yang
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03): : 436 - 456
  • [26] Modeling suspension bridges through the von Karman quasilinear plate equations
    Gazzola, Filippo
    Wang, Yongda
    CONTRIBUTIONS TO NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS, 2015, 86 : 269 - 297
  • [27] Suspension bridges unplugged
    Thorkildsen, E
    Wang, G
    CIVIL ENGINEERING, 1999, 69 (03): : 56 - 59
  • [28] Evolution of suspension bridges
    Ostenfeld, Klaus H.
    HORMIGON Y ACERO, 2019, 70 (289): : 103 - 113
  • [29] SUSPENSION BRIDGES IN FRANCE
    REVERDY, G
    MONUMENTS HISTORIQUES, 1987, (150-51): : 106 - 112
  • [30] Mathematical Modeling of Transient Processes in Magnetic Suspension of Maglev Trains
    Chaban, Andriy
    Lukasik, Zbigniew
    Lis, Marek
    Szafraniec, Andrzej
    ENERGIES, 2020, 13 (24)