Ensembling Sparse Autoencoders for Network Covert Channel Detection in IoT Ecosystems

被引:4
|
作者
Cassavia, Nunziato [1 ]
Caviglione, Luca [2 ]
Guarascio, Massimo [1 ]
Liguori, Angelica [3 ]
Zuppelli, Marco [2 ]
机构
[1] Inst High Performance Comp & Networking, Via Pietro Bucci 8-9C, I-87036 Arcavacata Di Rende, Italy
[2] Inst Appl Math & Informat Technol, Via Marini 6, I-16149 Genoa, Italy
[3] Univ Calabria, Via Pietro Bucci, Arcavacata Di Rende, Italy
基金
欧盟地平线“2020”;
关键词
Deep autoencoder; Ensemble method; Covert channel; Intelligent cyber attack detection system;
D O I
10.1007/978-3-031-16564-1_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network covert channels are becoming exploited by a wide-range of threats to avoid detection. Such offensive schemes are expected to be also used against IoT deployments, for instance to exfiltrate data or to covertly orchestrate botnets composed of simple devices. Therefore, we illustrate a solution based on Deep Learning for the detection of covert channels targeting the TTL field of IPv4 datagrams. To this aim, we take advantage of an Autoencoder ensemble to reveal anomalous traffic behaviors. An experimentation on realistic traffic traces demonstrates the effectiveness of our approach.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 50 条
  • [41] Covert Channel Detection Using Machine Learning
    Cavusoglu, Imge Gamze
    Alemdar, Hande
    Onur, Ertan
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [42] Covert Channel Detection: A Survey Based Analysis
    Gober, S. Zerafshan
    Javed, Barkha
    Saqib, Nazar Abbas
    2012 9TH INTERNATIONAL CONFERENCE ON HIGH CAPACITY OPTICAL NETWORKS AND EMERGING/ENABLING TECHNOLOGIES (HONET), 2012, : 57 - 64
  • [43] Determining Proximal Geolocation of IoT Edge Devices via Covert Channel
    Islam, Md Nazmul
    Patil, Vinay C.
    Kundu, Sandip
    PROCEEDINGS OF THE EIGHTEENTH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED), 2017, : 196 - 202
  • [44] Covert Communications Without Channel State Information at Receiver in IoT systems
    Hu, Jinsong
    Yan, Shihao
    Zhou, Xiaobo
    Shu, Feng
    Wang, Jiangzhou
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11) : 11103 - 11114
  • [45] Data Exfiltration Detection on Network Metadata with Autoencoders
    Willems, Daan
    Kohls, Katharina
    van der Kamp, Bob
    Vranken, Harald
    ELECTRONICS, 2023, 12 (12)
  • [46] A Network Covert Timing Channel Detection Method Based on Chaos Theory and Threshold Secret Sharing
    Xie, Jinpu
    Chen, Yonghong
    Wang, Linfan
    Wang, Zhe
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 2380 - 2384
  • [47] Automated Nuclei Detection in Serous Effusion Cytology with Stacked Sparse Autoencoders
    Baykal, Elif
    Dogan, Hulya
    Ercin, Mustafa Emre
    Ersoz, Safak
    Ekinci, Murat
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [48] Dynamic video anomaly detection and localization using sparse denoising autoencoders
    Medhini G. Narasimhan
    Sowmya Kamath S.
    Multimedia Tools and Applications, 2018, 77 : 13173 - 13195
  • [49] Mutual Information-Dynamic Stacked Sparse Autoencoders for Fault Detection
    Yin, Jie
    Yan, Xuefeng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (47) : 21614 - 21624
  • [50] Dynamic video anomaly detection and localization using sparse denoising autoencoders
    Narasimhan, Medhini G.
    Kamath, Sowmya S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (11) : 13173 - 13195