Information Dissemination in Distributed Organic Computing Systems with Distributed Hash Tables

被引:0
|
作者
Roth, Michael [1 ]
Schmitt, Julia [1 ]
Kluge, Florian [1 ]
Ungerer, Theo [1 ]
机构
[1] Univ Augsburg, Dept Comp Sci, D-86159 Augsburg, Germany
关键词
organic computing; information dissemination; peer-to-peer network; broadcast;
D O I
10.1109/ICCSE.2012.82
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Decision making in a self-managing distributed system requires information about the system's state. Accurate and timely information enables the overall system to respond better to state changes. Distributed systems can use different network protocols to connect the nodes. Since there is no guarantee that all protocols are able to send broadcasts or that broadcasts can be sent over different protocols we use distributed hash tables to enable an application layer broadcast, which only sends unicast messages in the network layer to spread node status information in a distributed system. Our research shows that we can spread information without sending unnecessary messages. By choosing the node IDs systematically, instead of generating them randomly, we can influence the network usage in badly connected network segments.
引用
收藏
页码:554 / 561
页数:8
相关论文
共 50 条
  • [21] Weighted Load Balancing in Distributed Hash Tables
    Loesch, Robin
    Schmidt, Jan
    Felde, Nils Gentschen
    IIWAS2019: THE 21ST INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES, 2019, : 473 - 482
  • [22] Atomic data access in distributed hash tables
    Lynch, N
    Malkhi, D
    Ratajczak, D
    PEER-TO-PEER SYSTEMS, 2002, 2429 : 295 - 305
  • [23] Dynamic load balancing in distributed hash tables
    Bienkowski, M
    Korzeniowski, M
    der Heide, FMA
    PEER-TO-PEER SYSTEMS IV, 2005, 3640 : 217 - 225
  • [24] Auto-adaptive distributed hash tables
    Dury, A
    2005 6TH INTERNATIONAL WORKSHOP ON GRID COMPUTING (GRID), 2005, : 268 - 273
  • [25] Reliability and load balancing in distributed Hash tables
    Rieche, S
    Niedermayer, H
    Götz, S
    Wehrle, K
    PEER-TO-PEER SYSTEMS AND APPLICATIONS, 2005, 3485 : 119 - 135
  • [26] Simple load balancing for distributed hash tables
    Byers, J
    Considine, J
    Mitzenmacher, M
    PEER-TO-PEER SYSTEMS II, 2003, 2735 : 80 - 87
  • [27] Multiple Choice Tries and Distributed Hash Tables
    Devroye, Luc
    Lugosi, Gabor
    Park, Gahyun
    Szpankowski, Wojciech
    RANDOM STRUCTURES & ALGORITHMS, 2009, 34 (03) : 337 - 367
  • [28] Multiple Choice Tries and Distributed Hash Tables
    Devroye, Luc
    Lugosi, Gabor
    Park, Gahyun
    Szpankowski, Wojciech
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 891 - +
  • [29] PaxonDHT: Achieving consensus in distributed hash tables
    Temkow, B
    Bosneag, AM
    Li, XJ
    Brockmeyer, M
    INTERNATIONAL SYMPOSIUM ON APPLICATIONS AND THE INTERNET , PROCEEDINGS, 2006, : 236 - +
  • [30] Enhanced distributed hash tables for complex queries
    Garg, Pankaj
    Kumar, Amit
    Saran, Huzur
    2006 1ST INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS SOFTWARE & MIDDLEWARE, VOLS 1 AND 2, 2006, : 514 - +