Smooth representations of epi-Lipschitzian subsets of Rn

被引:13
|
作者
Cornet, B [1 ]
Czarnecki, MO [1 ]
机构
[1] Univ Paris 01, CERMSEM, F-75013 Paris, France
关键词
epi-Lipschitzian; representation; normal convergence; approximation; smooth sets; normal cone; generalized equations;
D O I
10.1016/S0362-546X(98)00033-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:139 / 160
页数:22
相关论文
共 50 条
  • [21] Hardy Spaces on Open Subsets of Rn
    Lee, Ming-Yi
    Lin, Chin-Cheng
    Ooi, Keng Hao
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [22] Representations of the spaces C∞(RN) ∧ Hk,p(RN)
    Albanese, AA
    Moscatelli, VB
    STUDIA MATHEMATICA, 2000, 142 (02) : 135 - 148
  • [23] Weakly infinite dimensional subsets of RN
    Babinkostova, Liljana
    Scheepers, Marion
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (08) : 1302 - 1313
  • [24] Effective subsets under homeomorphisms of Rn
    Bosserhoff, Volker
    Hertling, Peter
    INFORMATION AND COMPUTATION, 2015, 245 : 197 - 212
  • [25] Polynomial Approximation on Convex Subsets of Rn
    Y. A. Brudnyi
    N. J. Kalton
    Constructive Approximation, 2000, 16 : 161 - 199
  • [26] COMPACT SUBSETS OF RN AND DIMENSION OF THEIR PROJECTIONS
    MARDESIC, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (02) : 631 - 633
  • [27] On the Hausdorff dimension of ultrametric subsets in Rn
    Lee, James R.
    Mendel, Manor
    Moharrami, Mohammad
    FUNDAMENTA MATHEMATICAE, 2012, 218 (03) : 285 - 290
  • [28] Category and dimension of compact subsets of Rn
    Feng, DJ
    Wu, J
    CHINESE SCIENCE BULLETIN, 1997, 42 (20): : 1680 - 1683
  • [29] Polynomial approximation on convex subsets of Rn
    Brudnyi, YA
    Kalton, NJ
    CONSTRUCTIVE APPROXIMATION, 2000, 16 (02) : 161 - 199
  • [30] On the Inexistence of Additive Equi-Lipschitzian Parametrizations of Compact Convex Subsets
    Pedro Terán
    Set-Valued Analysis, 2006, 14 : 319 - 326