A PURELY METRIC PROOF OF THE CARISTI FIXED POINT THEOREM

被引:8
|
作者
Kozlowski, Wojciech M. [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
fixed point; Caristi fixed point theorem; nonexpansive mapping; contraction; PRINCIPLE; MAPPINGS;
D O I
10.1017/S0004972716000800
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove Caristi's fixed point theorem using only purely metric techniques.
引用
收藏
页码:333 / 337
页数:5
相关论文
共 50 条
  • [41] ON CARISTI FIXED POINT THEOREM FOR SET-VALUED MAPPINGS
    Chaira, Karim
    Chaira, Soumia
    Lazaiz, Samih
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 59 (01) : 153 - 161
  • [42] Caristi type fixed point theorems in fuzzy metric spaces
    Karayilan, Hakan
    Telci, Mustafa
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (01): : 75 - 86
  • [43] A FIXED POINT THEOREM FOR CARISTI-TYPE CYCLIC MAPPINGS
    Boonsri, Narongsuk
    Saejung, Satit
    FIXED POINT THEORY, 2017, 18 (02): : 481 - 492
  • [44] Caristi-Type Fixed Point Theorem over Szaz Principle in Quasi-Metric Space with a Graph
    Chaira, Karim
    Eladraoui, Abderrahim
    Kabil, Mustapha
    Lazaiz, Samih
    JOURNAL OF MATHEMATICS, 2019, 2019
  • [45] On the Correlation between Banach Contraction Principle and Caristi's Fixed Point Theorem in b-Metric Spaces
    Romaguera, Salvador
    MATHEMATICS, 2022, 10 (01)
  • [46] A Simple Proof of Caristi's Fixed Point Theorem without Using Zorn's Lemma and Transfinite Induction
    Du, Wei-Shih
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (02): : 259 - 264
  • [47] The Caristi–Kirk Fixed Point Theorem from the point of view of ball spaces
    Franz-Viktor Kuhlmann
    Katarzyna Kuhlmann
    Matthias Paulsen
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [48] A fixed point theorem in metric spaces
    Vittorino Pata
    Journal of Fixed Point Theory and Applications, 2011, 10 : 299 - 305
  • [49] A fixed point theorem in metric spaces
    Pata, Vittorino
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 10 (02) : 299 - 305