QUADRATURE AND EXTREMAL BANDLIMITED FUNCTIONS

被引:17
|
作者
Littmann, Friedrich [1 ]
机构
[1] N Dakota State Univ, Dept Math, Fargo, ND 58108 USA
关键词
entire functions of exponential type; totally positive functions; extremal majorants; quadrature; de Branges spaces;
D O I
10.1137/120888004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(delta) be the class of functions of exponential type delta > 0. We prove that for integrable F is an element of A(2 pi delta) integral(infinity)(infinity) F(x)dx = delta(-1) Sigma(xi is an element of gamma,r)(1-gamma/pi(xi(2)+gamma(2))+gamma)F(delta(-1)xi), where T-gamma,T-r is the set of zeros of B-gamma,B-r(z) = z sin pi(z+r)-gamma cos pi(z+r). Let a > (2 delta)(-1). It is shown that for any Laguerre-Polya entire function E with E(+/- a) - 0 there exist two integrable functions G(-), G(+) is an element of A(2 pi delta) such that for all real x E(x)[G-(x) - chi([-a,a])(x)] <= 0, E(x)[G+(x) - chi([-a,a])(x)] >= 0. Combining these results we find the minimal value of ||S-T||(1), where S, T is an element of A(2 pi delta) satisfy S(x) <= chi([-a,a])(x) <= T(x) for all real x. We determine extremal functions for which the minimal value is assumed. As an application we give an explicit expression for C(delta,alpha) = inf(g is an element of A2)(delta) sup(x is an element of[-alpha,alpha]) parallel to g parallel to(2)(2)/vertical bar g(x)|(2), where A(2)(delta) is the set of square integrable functions in A(delta). This constant occurs in work of Donoho and Logan regarding reconstruction of bandlimited functions.
引用
收藏
页码:732 / 747
页数:16
相关论文
共 50 条
  • [11] Approximation of Bandlimited Functions on a Non-Compact Manifold by Bandlimited Functions on Compact Submanifolds
    R. Martin
    A. Kempf
    Sampling Theory in Signal and Image Processing, 2008, 7 (3): : 281 - 292
  • [12] Soft extrapolation of bandlimited functions
    Batenkov, Dmitry
    Demanet, Laurent
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [13] FAST INTERPOLATION OF BANDLIMITED FUNCTIONS
    Potter, Samuel F.
    Gumerov, Nail A.
    Duraiswami, Ramani
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4516 - 4520
  • [14] Random sampling of bandlimited functions
    Bass, Richard F.
    Groechenig, Karlheinz
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) : 1 - 28
  • [15] Bandlimited interpolation of continuous functions
    Boche, H
    Protzmann, M
    FREQUENZ, 1997, 51 (5-6) : 138 - 141
  • [16] Random sampling of bandlimited functions
    Richard F. Bass
    Karlheinz Gröchenig
    Israel Journal of Mathematics, 2010, 177 : 1 - 28
  • [17] Sampling and interpolation of bandlimited functions
    Han Huili
    Hua, Liu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (11) : 1862 - 1870
  • [18] Fourier and Hankel Bandlimited Functions
    L. Lorne Campbell
    Sampling Theory in Signal and Image Processing, 2002, 1 (1): : 25 - 32
  • [19] Nonuniform sampling of bandlimited functions
    Shin, Chang Eon
    Lee, Mun Bae
    Rim, Kyung Soo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) : 3814 - 3819
  • [20] CHARACTERIZATION OF BANDLIMITED FUNCTIONS AND PROCESSES
    LEE, AJ
    INFORMATION AND CONTROL, 1976, 31 (03): : 258 - 271